УДК 535.2

НЕСТАЦИОНАРНЫЕ ЭФФЕКТЫ ПРИ ОПТИЧЕСКОЙ НАКАЧКЕ АТОМОВ

Г.Г. АДОНЦ, Э.Г. КАНЕЦЯН

АОЗТ "Лазерная техника", Ереван

(Поступила в редакцию 20 мая 2005 г.)

Рассмотрена временная эволюция процесса оптической накачки при взаимодействии поляризованного света с атомными переходами с небольшими значениями момента количества движения ($J_1 = 1/2 \rightarrow J_2 = 1/2$; $J_1 = 1 \rightarrow J_2 = 0$). Исследованы условия образования оптической ориентации (выстраивания) в зависимости от полной энергии, интенсивности и длительности импульса.

В последнее время активно исследуются нелинейные эффекты, связанные с оптической когерентностью в поле поляризованного лазерного излучения в многоуровневых резонансных средах. В работе [1] экспериментально и теоретически исследовано возбуждение кросс-поляризованной волны при сложении двух разных процессов второго порядка. Самовращение резонансного эллиптически поляризованного света в свободных от столкновений парах рубидия изучено в работе [2]. Результаты расчетов методом матрицы плотности сравнены с данными измерений самовращения для линий *D*₁ и *D*₂ паров рубидия. Найдено, эффекты самовращения, включающие индивидуальные сверхтонкие переходы, подавляются вследствие доплеровского уширения и доминирующими могут оказаться ранее не известные эффекты взаимодействия света с множественными сверхтонкими переходами. Перенос населенности в Л-системе с промежуточными состояниями, принадлежащими к непрерывному спектру, исследовался в [3]. В работах [4,5] показана возможность реализации "локальной" инверсии населенностей между магнитными подуровнями верхнего и нижнего состояний атома Cs вследствие процесса оптической накачки магнитных подуровней. Наличие такой инверсии приводит к усилению спонтанного излучения на ортогональной поляризации, как в направлении лазерного излучения, так и в обратном направлении, что экспериментально подтверждено с использованием методов поляризационной спектроскопии в парах Cs на линии D₂.

Особый интерес представляет изучение явления оптической накачки, так как на его основе работает ряд приборов квантовой электроники. Обычно задачи, в которых теоретически рассматривается явление оптической накачки, решаются в стационарном случае [6-9], т.е. предполагается, что длительности импульсов значительно больше, чем времена релаксации в системе. При этом за время взаимодействия света со средой устанавливается ста-

ционарное распределение заселенностей по магнитным подуровням. В рассматриваемой системе релаксация обусловлена двумя различными механизмами – это радиационный распад и столкновительные процессы. В реальной экспериментальной ситуации времена столкновительной релаксации τ_c могут быть на несколько порядков больше, чем времена радиационной релаксации τ_r . Поэтому представляет интерес рассмотрение данного явления для импульсов с длительностью, достаточной для установления стационарного взаимодействия по радиационным процессам, но в то же время значительно более коротких, чем времена столкновительной релаксации.

В настоящей работе рассматривается временная эволюция процесса оптической накачки для времени $\tau_r < \tau_p < \tau_c$.

Целью настоящей работы является построение нестационарной нелинейной теории прохождения эллиптически поляризованной волны через резонансную среду с учетом всех возможных процессов релаксаций. Теория развита в представлении неприводимых тензорных операторов, когда удается диагонализировать матрицу релаксаций и ввести эффективные времена распада, связанные как с релаксацией заселенности, так и с релаксацией когерентности между магнитными подуровнями резонансной системы. Решение такой нестационарной задачи позволяет подробно проанализировать динамику образования оптической ориентации и выстраивания в системе атомов и выявить условия ее образования в зависимости от полной энергии импульса, интенсивности и длительности.

Рассмотрим прохождение поляризованного излучения с электрическим вектором

$$\mathbf{E}_{1} = \mathbf{E}(z,t)e^{-i\omega t + ikz} + \mathbf{c.c.}$$
(1)

через резонансную среду, состоящую из идентичных двухуровневых атомов. В поле поляризованного излучения снимается вырождение атомных уровней и реально задача сводится к взаимодействию излучения с совокупностью многоуровневых атомов. Ограничимся рассмотрением атомных переходов с небольшими значениями момента количества движения, а именно, 1/2 – 1/2, 1–0.

На переходе 1/2 – 1/2 для *z*-компоненты вектора ориентации атомов η^z из системы уравнений для компонент матрицы плотности [10,11] можно получить

$$\frac{\partial \eta^{z}}{\partial t} = -\frac{\gamma'}{6} \left\{ \frac{G_{+} - G_{-}}{\Phi} + \frac{G_{+} + G_{-} + 2G_{+}G_{-}}{\Phi} \eta^{z} \right\},$$
(2)

где

$$\Phi = 1 + G, \qquad G = \frac{1}{2}(G_+ + G_-).$$

Здесь $G_{\pm} = P_{\pm} / P_S$ – это безразмерные параметры мощности, $P_{\pm} = (c / 4\pi) |E_{\pm}|^2$ – мощность волны, $P_s = 3c\hbar^2 \gamma \gamma' / 8\pi |d|^2 (1 + \delta^2)$ – величина мощности насыщения в скалярном случае, $\delta = \varepsilon / \gamma$, $\varepsilon = \omega - \omega_0$ – расстройка резонанса, d – приведенный матричный элемент дипольного перехода, γ – однородная ширина, $(\gamma')^{-1} = \tau$ – время релаксации полной

заселенности.

При получении уравнения (2) для η^z предполагалось, что длительность импульса значительно меньше времени столкновительной релаксации и гораздо больше, чем времена радиационной релаксации.

Из (2) для η^z можно получить

$$\eta^{z} = -\frac{\gamma'}{6}e^{-\lambda(t)}\int_{-\infty}^{t}\frac{G_{+}(t') - G_{-}(t')}{\Phi(t')}e^{\lambda(t')}dt',$$
(3)

где

$$\lambda(t) = \frac{\gamma'}{6} \int_{-\infty}^{t} \frac{G_{+}(t') + G_{-}(t') + 2G_{+}(t')G_{-}(t')}{\Phi(t')} dt'.$$

Для циркулярно-поляризованной волны выражение (3) можно проинтегрировать, при этом для степени ориентации получим

$$\eta^{z} = -1 + e^{-\lambda(t)}, \qquad \lambda(t) = \frac{\gamma'}{3} \int_{-\infty}^{t} \frac{G(t')}{1 + G(t')} dt'.$$
(4)

Здесь $\lambda(t)$ – фактор, определяющий эффективное время установления ориентации в поле циркулярно-поляризованной волны.

Если в любой момент времени значение параметра мощности значительно больше единицы (G(t)>>1), то для степени ориентации имеем

$$\eta^z = -1 + e^{\frac{-\gamma t}{3}}.$$
 (5)

Для импульсов с большими мощностями полная ориентация устанавливается за времена $t \sim 3\tau$ и не зависит ни от величины самой мощности, ни от полной энергии импульса. Иначе говоря, когда скорость вынужденных переходов в поле много больше скорости спонтанного распада, то время установления процесса определяется только спонтанным распадом и не зависит от параметров поля.

Проведем численные оценки времени формирования эффекта оптической накачки на примере резонансного перехода $1/2 \rightarrow 1/2$, реализующегося, в частности, в парах щелочных металлов. В реальной экспериментальной ситуации времена столкновительной релаксации τ_c составляют порядка $10^{-(5+6)}$ сек, что на несколько порядков больше, чем время радиационной релаксации $\tau_r \sim 10^{-8}$ сек. Поэтому для импульсов с длительностью τ , удовлетворяющей неравенству 10^{-8} сек $\tau < 10^{-(5+6)}$ сек, время установления ориентации составляет $t \sim 3\tau \sim 3 \cdot 10^{-8}$ сек и не зависит ни от величины мощности насыщающей волны, ни от полной энергии импульса.

Волновое уравнение для тока перехода η_{12} имеет вид

$$\left(\Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \mathbf{E} = -\frac{4\pi N d\omega^2}{\sqrt{3}c^2} \eta_{12}^*, \tag{6}$$

где

$$\eta_{12} = -\frac{id(1-i\delta)}{2\sqrt{3}\eta\hbar(1+\delta^2)}e^{-\lambda}\frac{E_+^*}{1+G}.$$
(7)

Для изменения интенсивности волны из волнового уравнения (6) можно получить

$$\frac{\partial G}{\partial z} - \frac{1}{c} \frac{\partial G}{\partial t} = -\alpha_0 e^{-\lambda} \frac{\partial \lambda}{\partial t}, \qquad (8)$$

где $\alpha_0 = 4\pi N\omega |d|^2 / 3c\hbar\gamma(1+\delta^2)$ – коэффициент линейного поглощения.

В линейном приближении по интенсивности система интегро-дифференциальных уравнений (4),(8) для *G*, *λ* решается, и для поглощения полной энергии имеем

$$\lambda(t) = \ln[1 + e^{-\alpha_0 z} (e^{\lambda_0(t)} - 1)],$$
(9)

где $\lambda(t) = \frac{\gamma'}{3} \int_{-\infty}^{t} G(t') dt'$ – полная энергия импульса.

При малых интенсивностях существенную роль в оптической ориентации атомов играет полная энергия излучения. Если начальная энергия достаточно велика ($\lambda_0 >> 1$, $\alpha_0 z \leq \lambda_0$), то закон поглощения (8) принимает вид

$$\lambda(t) = \lambda_0(t) - \alpha_0 z \,, \tag{10}$$

т.е. в поглощении полной энергии, при больших энергиях имеет место насыщение. При малых значениях полной энергии ($\lambda_0 <<1$) уравнение (9) принимает вид

$$\lambda(t) = \lambda_0(t)e^{-\alpha_0 z}, \qquad (11)$$

т.е. имеем обычный закон поглощения для импульсов с малой энергией.

Если поляризация волны несколько отличается от циркулярной, а именно, имеются достаточно сильная компонента *G*₊, ответственная за оптическую накачку, и слабая компонента *G*, то для закона поглощения слабой компоненты можно получить:

$$G_{-} = G_{-}^{0} e^{-2\alpha_{0} z} e^{\frac{\eta}{\alpha_{0}} \int_{e}^{e^{-\lambda(\xi,\eta')}}} d\eta', \quad \xi = t - \frac{z}{c}, \quad \eta = z.$$
(12)

где $\lambda(t)$ определяется формулой (4).

Для больших значений λ ($\lambda >> 1, e^{-\lambda} \to 0$) закон поглощения имеет вид

$$G_{-} = G_{-}^{0} e^{-2\alpha_{0}z}; (13)$$

т.е. благодаря полной ориентации атомов вдвое увеличивается число атомов, взаимодействующих с волной G_- , что в свою очередь изменяет коэффициент поглощения.

При малых значениях λ (λ <<< l, $e^{-\lambda} \rightarrow$ l) отсутствует эффект оптической ориентации и закон поглощения имеет вид

$$G_{-} = G_{-}^{0} e^{-\alpha_{0} z} .$$
 (14)

Подобная теория может быть развита и на переходе 1-0. В данном случае теория усложняется тем, что наряду с ориентацией сильным светом создается также и выстраивание.

Аналогично вышеполученным результатам для перехода 1–0 получим следующее. Циркулярно-поляризованная волна создает как ориентацию, так и выстраивание, при этом *z*-компонента вектора ориентации и *zz*-компонента тензора выстраивания изменяются во времени по закону

$$\eta^{z} = \frac{1}{2}(e^{-\lambda_{1}} - 1) , \ \eta^{zz} = -\frac{1}{3}\eta^{z}.$$
(15)

Линейно-поляризованной волной создается только выстраивание, для η^z при этом имеем

$$\eta^{zz} = \frac{1}{3}(e^{-\lambda_1} - 1). \tag{16}$$

В формулах (15) и (16) $\lambda_1(t)$ имеет вид

$$\lambda_{1} = \frac{\gamma'}{3} \int_{-\infty}^{t} \frac{G(t')}{1 + \frac{2}{3}G(t')} dt', \qquad (17)$$

где

$$G = \frac{4}{3} \frac{|d|^2 (\mathbf{E}\mathbf{E}^*)}{\hbar^2 \gamma \gamma'}.$$

Волновые уравнения как для линейно-, так и для циркулярно-поляризованных волн имеют вид (8), где вместо $\lambda(t)$ нужно подставить $\lambda_1(t)$ из (17). Для закона поглощения полной энергии будем иметь выражения, аналогичные (9). В отличие от перехода 1/2-1/2, на переходе 1-0 неравномерное распределение заселенности по магнитным подуровням (ориентация, выстраивание) создается как линейно-, так и циркулярно-поляризованными волнами. Причем без учета столкновительной релаксации процесс установления неравномерной заселенности на переходе 1-0 во времени развивается одинаково для линейно- и циркулярно-поляризованных волн.

Таким образом, нами развита нелинейная нестационарная теория распада поляризованного света в четырехуровневых системах с малыми моментами количества движения (переходы $I_1 = 1/2 \rightarrow I_2 = 1/2$ и $I_1 = 1 \rightarrow I_2 = 0$). Продемонстрировано, что в общем случае задача о взаимодействии поляризованного света с двухуровневым атомом сводится к задаче о взаимодействии света с многоуровневой системой магнитных подуровней. Теория развита в kq-представлении в общем случае для эллиптически поляризованной волны с учетом всех возможных процессов релаксаций. Найдены характерные времена распада мультипольных моментов уровней (k = 0 – заселенности, k = 1 –ориентации, k= 2 – выстраивания), которые имеют наглядный физический смысл и характеризуют распад атомной системы в системе магнитных подуровней в полях с различной поляризацией

(круговой, линейной). Проведены численные оценки времен распада для паров щелочных металлов.

ЛИТЕРАТУРА

- 1. G.I.Petrov, O.Albert, N.Minkovski, et al. J. Opt. Soc. Amer. B, 19, 268 (2002).
- 2. S.M.Rochester, D.S.Hsiung, D.Budker, et al. Phys. Rev. A, 63, 043814 (2001).
- 3. A.Raczynski, A.Rezmerska, I.Zaremba. Phys. Rev. A, 63, 025402 (2001).
- 4. **D.Sarkisyan, A.Papoyan**. Technical Digest of the XVI Internat. Conf. on Coherent and Nonlinear Optics (ICONO'98), Moscow, Russia, TuI3 [invited], 1998, p.23.
- 5. A.V.Papoyan, R.G.Unanyan, K.Bergmann. Verhandlungen der Deutschen Physikalishen Gessellschaft, 4, 414 (1999).
- 6. L.C.Balling. Adv. Quant. Electr., 3, 1 (1975).
- 7. P.G.Pappas et al. Phys. Rev. A, 21, 1955 (1980)
- 8. М.Б.Горный, Д.Л.Маркман, Б.Г.Матисов. ЖПС, 40, 110 (1984).
- 9. А.П.Казанцев, В.С.Смирнов и др. Оптика и спектроскопия, 57, 199 (1984).
- 10. G.G.Adonts, D.G.Akopyan, K.V.Arutyunyan. J. Phys. B., At. Mol. Phys., 19, 4113 (1986).
- 11. В.М.Арутюнян, Д.Г.Акопян. Изв. АН Арм. ССР, Физика, **19**, 222 (1984).

ՈՉ ՍՏԱՑԻՈՆԱՐ ԷՖԵԿՏՆԵՐԸ ԱՏՈՄՆԵՐԻ ՕՊՏԻԿԱԿԱՆ ՄՂՄԱՆ ՊՐՈՑԵՍԻ ԸՆԹԱՑՔՈՒՄ

ዓ.ዓ. ԱԴՈՆՑ, Է.ዓ. ԿԱՆԵՑՅԱՆ

Դիտարկված է օպտիկական մղման պրոցեսի ժամանակային էվոլյուցիան շարժման քանակի մոմենտի փոքր արժեքներով ($J_1 = 1/2 \rightarrow J_2 = 1/2$; $J_1 = 1 \rightarrow J_2 = 0$) ատոմային անցումների և բևեռացված լույսի փոխազդեցության դեպքում։ Հետազոտված են օպտիկական օրիենտացիայի (դասավորման) ձևավորման պայմանները՝ կախված իմպուլսի ամբողջական էներգիայից, ինտենսիվությունից և տևողությունից։

NON-STATIONARY EFFECTS IN OPTICAL PUMPING OF ATOMS

G.G. ADONTS, E.G. KANETSYAN

Time evolution of optical pumping process is considered for polarized radiation interaction with atomic transitions with small angular momenta ($J_1 = 1/2 \rightarrow J_2 = 1/2$; $J_1 = 1 \rightarrow J_2 = 0$). The conditions of optical orientation (alignment) formation depending on the total energy, intensity, and duration of pulse are investigated.