УДК 621.315

ЭЛЕКТРОННЫЕ СОСТОЯНИЯ В СИЛЬНО СПЛЮСНУТОЙ ЭЛЛИПСОИДАЛЬНОЙ КВАНТОВОЙ ТОЧКЕ ПРИ НАЛИЧИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Д.Б. АЙРАПЕТЯН, К.Г. ДВОЯН

Ереванский государственный университет

(Поступила в редакцию 16 октября 2004 г.)

В адиабатическом приближении исследованы энергетические состояния электрона в сильно сплюснутой эллипсоидальной квантовой точке (КТ) во внешнем электрическом поле. Для КТ из GaAs выявлена сложная зависимость величины штарковского расщепления от значения электрического поля.

1. Введение

Современные технологии сделали реальной возможность выращивания квантовых точек (КТ) различных форм и размеров [1]. Большинство работ в этой области посвящены сферическим КТ. Однако в ряде работ было показано, что даже малое изменение внешней геометрической формы КТ сильно влияет на спектр носителей заряда (НЗ) в таких структурах [2]. Иными словами, выбор геометрической формы во время роста КТ является рычагом управления спектра НЗ в них. С этой точки зрения эллипсоиды вращения по сравнению со сферами обладают добавочным геометрическими параметром (две полуоси вместо радиуса сферы). Наличие электрического поля, в свою очередь, открывает достаточно широкие возможности для управления энергетическим спектром в КТ.

В настоящей работе рассмотрены электронные состояния в сильно сплюснутом эллипсоиде вращения при наличии внешнего однородного электрического поля.

2. Теория

Рассмотрим непроницаемую, сильно сплюснутую эллипсоидальную КТ в электрическом поле. Тогда потенциальную энергию электрона можно записать в виде

$$U(X,Y,Z) = \begin{cases} 0, \ (X^2 + Y^2)/a^2 + Z^2/c^2 \le 1, \\ \infty, (X^2 + Y^2)/a^2 + Z^2/c^2 > 1, \end{cases} a >> c,$$
(1)

где *а* и *с* – соответственно, большая и малая полуоси эллипсоида. Гамильтониан системы в цилиндрических координатах имеет вид

$$\hat{\mathbf{H}} = \frac{\hbar^2}{2\mu} \left[\frac{\partial}{\partial \rho^2} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial Z^2} \right] + eFZ + \hat{U}(\rho, \varphi, Z) .$$
(2)

В безразмерных величинах его можно представить в виде суммы "быстрой" \hat{H}_1 и "медленной" \hat{H}_2 систем, $\hat{H} = \hat{H}_1 + \hat{H}_2 + \hat{U}(r, \varphi, z)$, где

$$\hat{H}_1 = -\partial^2 / \partial z^2 + eFz, \qquad (3)$$

$$\hat{H}_{2} = -\left(\partial^{2}/\partial r^{2} + \partial/r\partial r + \partial^{2}/r^{2}\partial\varphi^{2}\right), \qquad (4)$$

 $r = \rho/a_B$, $z = Z/a_B$, $\hat{H} = \hat{H}/E_R$, е и μ – соответственно, заряд и эффективная масса электрона, а $E_R = \hbar^2/2\mu a_B^2$ и $a_B = \hbar^2/\mu e^2$ – эффективная энергия Ридберга и боровский радиус электрона. Внешнее однородное электрическое поле направлено вдоль оси z и задается в виде $\mathbf{F} = \mathbf{F}(0, 0, F)$. Решим задачу в адиабатическом приближении. Волновую функцию (ВФ) ищем в виде $\psi(r, \varphi, z) = e^{im\varphi} \chi(z; r) R(r)$. При фиксированном значении координаты r движение частицы локализовано в одномерной потенциальной яме с эффективной шириной $c(r) = 2c_1 \sqrt{1 - r^2/a_1^2}$, где $c_1 = c/a_B$, $a_1 = a/a_B$.

Решим уравнение Шредингера быстрой подсистемы

$$-\left[\partial^2/\partial z^2 + \gamma z\right]\chi(z;r) = \varepsilon_1(r)\chi(z;r), \qquad (5)$$

где введены обозначения $\gamma = 2Fea_B^3 \mu/\hbar^2$, $\varepsilon_1(r) = E_1(r)/E_R$. После замены переменной $\xi = -\gamma^{1/3}z + \gamma^{-2/3}\varepsilon_1(r)$ приходим к уравнению Эйри

$$\chi''(\xi) + \xi \chi(\xi) = 0, \qquad (6)$$

решения которого задаются в виде $\chi(\xi) = C_1 A_i(\xi) + C_2 B_i(\xi)$, где $A_i(\xi)$ и $B_i(\xi) - функции Эйри, соответственно, первого и второго рода. Энергетический спектр определяется из граничных условий, налагаемых на ВФ:$

$$A_i\left(\xi^+\right)B_i\left(\xi^-\right) - A_i\left(\xi^-\right)B_i\left(\xi^+\right) = 0 , \qquad (7)$$

где введено обозначение $\xi^{\pm} = \mp \gamma^{1/3} c(r)/2 + \gamma^{-2/3} \varepsilon_1(r)$. Считая, что частица в основном локализована в промежутке $r \ll a_1$, для одномерной энергии численно получим

$$\varepsilon_1(r) = \alpha_n + \beta_n r^2, \quad n = 1, 2, \dots,$$
(8)

где α_n и β_n – некоторые константы, зависящие от электрического поля. Выражение (8) является неким эффективным потенциалом, входящим в уравнение Шредингера "медленной" системы

$$-\left[\partial^2/\partial r^2 + \partial/r\partial r - m^2/r^2\right]R(r) + \left(\alpha_n + \beta_n r^2\right)R(r) = \varepsilon R(r).$$
(9)

ВФ ищем в виде $R(\eta) = e^{-\eta/2} \eta^{|m|/2} \Omega(\eta)$, где $\eta = \sqrt{\beta_n} r^2$, после чего получим уравнение Куммера

$$\eta \Omega^{\bullet}(\eta) + \left(\left| m \right| + 1 - \eta \right) \Omega^{\prime}(\eta) + \left(\delta - \left(\left| m \right| + 1 \right) / 2 \right) \Omega(\eta) = 0 , \qquad (10)$$

решения которого задаются вырожденными гипергеометрическими функциями первого рода $\Omega(\eta) = \Omega_1 F_1 \{-(\delta - (|m|+1)), |m|+1, \eta\}$ где $\delta = (\varepsilon - \alpha_n)/4\sqrt{\beta_n}$. Окончательно для энергии имеем

$$\varepsilon = \alpha_n + 4\sqrt{\beta_n} \left(n_r + \frac{|m|+1}{2} \right), \quad n_r = 0, 1, \dots.$$
(11)

3. Обсуждение

Как видно из полученных результатов (см.(11)), при наличии электрического поля спектр частицы является эквидистантным, что имеет место также и в его отсутствие [3]. Однако, частота перехода между уровнями, которая при наличии поля зависит от параметра β_n , получается больше, чем в его отсутствие. Так, например, при $F = 5 \cdot 10^3$ В/см, $a = 2.5a_B$ и $c = 0.5a_B$ (в частности, для GaAs $a_B = 104$ A, $E_R = 5.275$ мэВ), частота перехода получается $\omega = 5.71 \cdot 10^{13}$ с⁻¹, что соответствует инфракрасному диапазону частот. При отсутствии же поля имеем $\omega = 2.17 \cdot 10^{13}$ с⁻¹, что почти в два с половиной раза меньше.

Рис.1. а) Зависимость одномерных уровней энергии электрона от величины электрического поля при фиксированном значении координаты r=0.3.6) Изменение дна ямы под воздействием поля.

Отметим, что выявлена сложная зависимость штарковского расщепления от величины приложенного поля. На рис.1а приведена зависимость одномерной (направление OZ) энергии электрона в сильно сплюснутой эллипсоидальной КТ от величины электрического поля при фиксированном значении *r*. Энергия основного состояния с увеличением поля убывает, тогда как все остальные уровни сначала увеличиваются, а затем с увеличением поля понижаются.

На рис.2. приведены зависимости $|\chi(Z)|^2$ от эффективной ширины ямы для первых трех уровней энергии одномерного движения электрона при различных величинах электрического поля. Как видно из рисунка, для первого состояния (n=1) сдвиг $|\chi(Z)|^2$ отрицателен, что является следствием наложения поля, которое в свою очередь приводит к появлению силы, направленной противоположно по отношению к полю. Картина становится иной для возбужденных состояний. При сравнительно малых полях сдвиг $|\chi(Z)|^2$ положителен. Это обстоятельство объясняется изменением дна ямы вследствие наложения поля. Иными словами, частица с большей вероятностью локализуется в положительном участке ямы и энергия возрастает. Дальнейшее же увеличение поля снова понижает энергию частицы.

Рис.2. Зависимость $|\chi(Z)|^2$ от эффективной ширины ямы (от координаты Z) для первых трех уровней энергии одномерного движения электрона при различных величинах электрического поля. 1 - F = 100 В/см, 2 - F = 500 В/см, 3 - F = 1000 В/см.

Аналогичное поведение спектра было выявлено авторами [4] в случае квантовой пленки. Такая сложная зависимость штарковского расщепления объясняется конкуренцией размерного квантования и воздействия поля. Воздействие поля приводит к искривлению дна потенциальной ямы, которая по-разному влияет на уровни (см. рис.16), что и является причиной этого сложного поведения спектра.

Работа выполнена в рамках государственной целевой программы РА "Полупроводниковая наноэлектроника".

ЛИТЕРАТУРА

- 1. P.Harrison. Quantum Wells, Wires and Dots: Theoretical and Computational Physics. University of Leeds, Leeds, United Kingdom, 1999.
- 2. К.Г.Двоян, Е.М.Казарян. Изв. НАН Армении, Физика, 33, 130 (2001).
- 3. В.М.Галицкий, Б.М.Карнаков, В.И.Коган. Задачи по квантовой механике. М., Наука, 1981.
- 4. M.Matsuura, T.Kamizato. Phys. Rev. B, 33, 8385 (1986).

ԷԼԵԿՏՐՈՆԻ ՎԻճԱԿՆԵՐԸ ԽԻՍՏ ՍԵՂՄՎԱԾ ԷԼԻՊՍԱՐԴԱՅԻՆ ՔՎԱՆՏԱՅԻՆ ԿԵՏՈՒՄ ԷԼԵԿՏՐԱԿԱՆ ԴԱՇՏԻ ԱՌԿԱՅՈՒԹՅԱՄԲ

Դ.Բ. ՀԱՅՐԱՊԵՏՅԱՆ, Կ.Գ. ԴՎՈՅԱՆ

Ադիաբատական մոտավորությամբ ուսումնասիրված են էլեկտրոնի էներգիական վիճակները խիստ սեղմված էլիպսարդային քվանտային կետում արտաքին էլեկտրական դաշտում։ GaAs-ի քվանտային կետի համար ի հայտ է բերված շտարկյան ճեղքման` էլեկտրական դաշտից ունեցած բարդ կախվածությունը։

ELECTRON STATES IN A STRONGLY FLATTENED ELLIPSOIDAL QUANTUM DOT IN THE PRESENCE OF ELECTRIC FIELD

D.B. HAYRAPETYAN, K.G. DVOYAN

In the framework of adiabatic approximation the electron energy states in a strongly flattened ellipsoidal quantum dot in an external electrical field are studied. For a GaAs quantum dot the complicated dependence of the Stark splitting magnitude on the electric field is revealed.