Известия НАН Армении, Физика, т.40, №3, с.187-193 (2005)

УДК 535.342

БЕЗДОПЛЕРОВСКАЯ СПЕКТРОСКОПИЯ НАСЫЩЕНИЯ ПОГЛОЩЕНИЯ АТОМОВ РУБИДИЯ ВО ВНЕШНЕМ МАГНИТНОМ ПОЛЕ

Р.Х. ДРАМПЯН¹, А.Д. ГРИНТРИ^{2,3}, А.В. ДАРРАНТ²

Институт физических исследований НАН Армении

² Открытый университет, Милтон Кейнс, Великобритания

³Мельбурнский университет, Мельбурн, Австралия

(Поступила в редакцию 15 февраля 2005 г.)

Исследованы бездоплеровские спектры атомов рубидия в геометрии встречных накачивающего и пробного пучков во внешнем магнитном поле 0-12 Гс. Реализованы условия эксперимента, выявляющие роль насыщения поглощения, сверхтонкой оптической накачки и когерентных эффектов в формировании бездоплеровских спектров.

1. Введение

Насыщение поглощения (НП) является одним из хорошо известных методов бездоплеровской спектроскопии высокого разрешения. Сообщалось о многочисленных наблюдениях спектров НП сверхтонкой структуры щелочных атомов, в частности, Na, Rb, Cs (см., например, [1-7] и ссылки, приведенные в этих работах). Интересным представляется исследование эволюции спектров НП в магнитном поле как с фундаментальной, так и с практической точек зрения. Магнитное поле является дополнительным параметром, позволяющим контролировать форму линии, интенсивность и частоту бездоплеровских спектральных линий. Это может иметь применения, например, для перестройки [5] и стабилизации [7] частоты диодных лазеров. Известна лишь одна работа [6], где влияние слабого магнитного поля и роль когерентных эффектов были изучены для спектра НП D_2 линии атома Cs при комнатной температуре.

При исследовании бездоплеровских спектров в спектроскопии НП важную роль играет сверхтонкая оптическая накачка атомов [8]. В обычных экспериментах по спектроскопии НП пробный пучок намного слабее по интенсивности, чем пучок накачки. В настоящем эксперименте варьировались относительные интенсивности накачивающего и пробного пучков, реализуя также условие их равенства, но ниже интенсивности насыщения перехода. Такие экспериментальные условия моделируют ситуацию, когда эффект насыщения сильно уменьшается и сверхтонкая оптическая накачка играет доминирующую роль. Приложение магнитного поля позволяет выявить роль когерентных эффектов. Некоторые результаты нашего эксперимента сообщались в [9].

2. Экспериментальная установка

Экспериментальная установка была аналогична использованной в [10] по исследованию бездоплеровских спектров фарадеевского вращения в схеме встречных световых пучков в парах рубидия (призма Глана, расположенная после кюветы с парами, была удалена). Непрерывный диодный лазер с внешним резонатором с длиной волны 2~780 нм и шириной линии <1 МГц сканировался вблизи переходов S1/2-P3/2, Fg=2 -Fc=1,2,3 для 87Rb. Доплеровская ширина переходов при комнатной температуре составляет 530 МГц. естественная ширина перехода $\Gamma \approx 6$ МГц. В эксперименте использовалась отпаянная сапфировая кювета (с гранатовыми окнами) длиной 6 см. содержащая пары рубидия. Кювета помещалась в центре трех пар взаимно-ортогональных катушек Гельмгольца, которые подавляли лабораторные магнитные поля с точностью <0.1 Гс и обеспечивали величину продольного магнитного поля 0-12 Гс. Мощности прямого пучка, который регистрировался, и обратного пучка (в области 20 - 150 мкВт) и поляризация обратной волны могли меняться в ходе эксперимента. Диаметр пучка составлял 2 мм. Часть пучка использовалась для наблюдения реперных спектров НП в стеклянной кювете с Rb длиной 8 см. Спектры НП детектировались с помощью фотодиодов и осциллографа. Измерения проводились при температурах $T = 20-45^{\circ}$ С (плотность атомов рубидия N~10¹⁰-10¹¹ см⁻³).

3. Экспериментальные результаты

Зависимость спектров НП от величины магнитного поля для взаимноортогональных поляризаций встречных пучков и мощностей прямого и обратного пучков $P_{FW} = 20.5$ мкВт и $P_{BW} = 26.9$ мкВт, соответственно, при $T = 22^{\circ}$ С показана на рис.1а. Сигнал НП для перехода $F_g = 2 - F_e = 3$ увеличивается с возрастанием величины магнитного поля. Сигналы НП для кроссоверрезонансов $F_g = 2 - F_e = 2,3$ (СО23) и $F_g = 2 - F_e = 1,3$ (СО13) имеют минимум при нулевом магнитном поле и показывают максимум при B = 3 Гс и B = 6 Гс, соответственно (рис.16).

Температурные зависимости пропускания пробного пучка для прямых и кроссовер-резонансов ⁸⁷Rb для мощностей прямой и обратной волн 22.3 и 28.9 мкВт и 24.3 и 154.5 мкВт, соответственно, при нулевом магнитном поле показаны на рис.2. Пропускание пробного пучка возрастает в узкой температурной области $T=25-30^{\circ}$ С и затем уменьшается до нуля при увеличении температуры до ~45°С.

Рис.1. а) Зависимость спектров НП ⁸⁷Rb от магнитного поля для $P_{FW} = 20.5$ мкBт и $P_{BW} = 26.9$ мкBт и взаимно-ортогональных поляризаций пробного и накачивающего пучков. Спектры сверху вниз соответствуют B = 0; 0.8; 2; 4.6; 7.1; 9.8; 11; 12.3 Гс. Нижний спектр – реперный. Спектры справа налево соответствуют переходам $F_g = 2 - F_e = 3$, CO23, CO13, $F_g = 2 - F_e = 2$, CO12, $F_g = 2 - F_e = 1$ (нулевая частота). б) Зависимость сигналов НП для $F_g = 2 - F_e = 3$, CO23, CO13 резонансов от магнитного поля.

Рис.2. Зависимость спектров НП от температуры паров рубидия для $P_{FW} = 22.3$ мкВт и $P_{BW} = 28.9$ мкВт (a), $P_{FW} = 24.3$ мкВт и $P_{BW} = 154$ мкВт (б) и B = 0.

4. Обсуждение

Для объяснения экспериментальных результатов необходимо отличать закрытые (циклические) и открытые переходы. Закрытые переходы ($F_g = 2 - F_e = 3$ для ⁸⁷Rb) не имеют спонтанного распада на другой основной подуровень $F_g = 1$. Открытые системы $F_g = 2 - F_e = 1,2$ имеют спонтанный распад на другой сверхтонкий подуровень основного состояния (сверхтонкая оптическая накачка), вызывая депопуляцию возбужденного состояния. Кроссоверрезонансы включают как открытые, так и закрытые переходы.

Интенсивность насыщения $I_{sat} = 2 \pi h c \Pi \lambda^3$, которая характеризует интенсивность лазера, необходимую для возбуждения стимулированного излучения с такой же скоростью Γ , которую имеет спонтанный распад, оценивается $I_{sat} = 1.5 \text{ MBT/cm}^2$ для $\lambda = 780 \text{ нм}$ и $\Gamma = 6 \text{ M}\Gamma$ ц. Интенсивности пробного и накачивающего пучков составляли 0.5 и 3.5 мBT/cm², соответственно (мощность пучков ~ 20 и 150 мкВт и их диаметр ~ 2 мм).

Для обсуждения эффектов в нулевых или слабых магнитных полях, когда зеемановское расщепление $\Delta \omega_{Zeem}$ меньше по сравнению с шириной резонансной линии Γ , удобно рассмотрение с выбором оси квантования, ортогональной направлению пучка. Приложение магнитного поля *B* вдоль лазерного пучка приводит к прецессии магнитного момента вокруг направления распространения пучка и перераспределению населенности между магнитными подуровнями. Когда ось квантования направлена вдоль направления луча и поля *B* (Σ -система), то удобно другое описание эффектов. Это создание когерентности среди зеемановских подуровней основного состояния при *B*=0 и его разрушение в ненулевых магнитных полях.

Закрытый переход $F_g = 2 - F_e = 3$. Рассмотрим некогерентные эффекты для интенсивностей накачивающего и пробного пучков ниже интенсивности насыщения, когда они дают одинаковый вклад в перераспределение населенности атомных уровней. В системе с осью квантования, направленной вдоль электрического вектора пробного луча, линейно-поляризованный пробный пучок возбуждает переходы с $\Delta m_F = 0$ и оптически накачивает атомы в состояние m_F = 0, F_g = 2, с наибольшей относительной вероятностью 9 перехода. Ортогонально-поляризованный пучок накачки возбуждает переходы $\Delta m_F = \pm 1$, переводя атомы на подуровни $m_F = \pm 2$, $F_g = 2$ с меньшей относительной вероятностью поглощения пробного пучка – 5 (см. [11], с.218). Приложение слабого магнитного поля приводит к перераспределению населенностей среди магнитных подуровней m_F и заселению подуровней с большей вероятностью поглощения. Это соответствует уменьшению пропускания пробного пучка с увеличением магнитного поля в области 0 - 4 Гс, что противоречит экспериментально наблюденному увеличению пропускания в этой области магнитных полей. С другой стороны, в Σ-системе когерентные переходы для закрытых переходов с F_g < F_e приводят к усиленному поглощению при B = 0 с уменьшенным поглощением при увеличении В [12-17], что согласуется с экспериментальными результатами, показанными на рис.16 для B = 0 - 4 Гс, где данное рассмотрение справедливо (расстояние между соседними зеемановскими подуровнями $\Delta \omega_{\text{Zeem}} = 0.7$ и 0.9 МГц/Гс для F_{g} и F_{e} состояний, соответственно).

Кроссовер-резонансы ⁸⁷Rb. Кроссовер-резонансы возникают, когда лазер настроен между двумя верхними уровнями [6]. Изучены два кроссовер-резонанса - СО13 и СО23. Для кроссовер-резонансов должны быть рассмотрены открытые и закрытые переходы одновременно. Рассмотрение некогерентных эффектов (аналогичное проведенному выше для $\Delta \omega_{\text{Zeem}} < \Gamma$) для пучка накачки, находящегося в резонансе с закрытым переходом $F_g = 2 - F_e = 3$, и пробного пучка – в резонансе с переходами F_g =2 – F_e =2 (СО23) и $F_{e} = 2 - F_{e} = 1$ (CO13), показывает увеличение пропускания пробного пучка с увеличением В. Когерентные эффекты доминируют, когда пробный пучок взаимодействует с атомной группой, для которой он в резонансе с закрытым переходом Fg = 2 - Fe = 3. Для этой V-системы когерентные эффекты приводят к "ярким" резонансам (усиленное поглощение и флуоресценция) [14-17] или минимуму при В = 0 в зависимости пропускания пробного пучка от магнитного поля. Таким образом, в рассмотренном случае как когерентные, так и некогерентные эффекты дают вклад в кроссовер-резонансы, однако их относительный вклад нуждается в дополнительном определении.

Уменьшение сигналов пропускания для CO13 и CO23 резонансов в сильных магнитных полях 6–12 Гс связано с вкладом новых атомных групп в поглощение для новых пар частот пробной и накачивающей волн, резонансных с переходами между зсемановски расщепленными подуровнями основного уровня $F_g = 2$ и верхних уровней $F_e = 1$, $F_e = 3$ для CO13 и $F_e = 2$, $F_e = 3$ для CO23, соответственно (рассмотрение в Σ -системе), по сравнению со случаем B = 0.

Температурная зависимость спектров НП. Вблизи комнатной температуры, когда $\alpha L < 1$, где α – коэффициент поглощения, L – длина среды (оптически тонкая среда и ослаблением пучка накачки в среде пренебрегаем) увеличение температуры (следовательно, атомной плотности) приводит к увеличению насыщения среды пучком накачки и соответствующему увеличению пропускания пробного пучка. Это видно в области температур 25-28°С и 25-32°С на рис.2а и б, соответственно.

Измеренная величина произведения коэффициента поглощения на длину образца αL равна 0.6 при 24°С ($N = 1.3 \cdot 10^{10}$ см⁻³) и мощностях накачивающего и пробного пучков 96.7 и 47.3 мкВт, соответственно, и ожидается равной $\alpha L \sim 1.6$ при 35°С ($N = 3.6 \cdot 10^{10}$ см⁻³), когда $\alpha \sim N$. Следовательно, необходимо принять во внимание ослабление пучка накачки при прохождении через оптически более плотную среду. Это ослабление приводит к уменьшению пропускания среды и соответствующему увеличению поглощения (уменьшению пропускания) пробного пучка с увеличением атомной плотности (область температур 32–45°С на рис.2). Увеличение интенсивности *I* пучка накачки приведет к уменьшению α по закону $\alpha = \alpha_0/(1 + I/I_{sat})^{1/2}$ [18], где α_0 – линейный коэффициент поглощения. Следовательно, среда становится оптически плотной при больших атомных плотностях, что объясняет смещение максимума зависимости пропускания пробного пучка от температуры в сторону больших *T* для больших мощностей пучка накачки (рис.26). В области исследуемых плотностей столкновениями атомов рубидия можно пренебречь.

Отметим также, что соотношение амплитуд сигналов для резонансов СО13, СО23 и $F_g = 2 - F_e = 3$ составляет 2:7:1 при $T = 25^{\circ}$ С для реализованного случая примерно равных и слабых по сравнению с I_s интенсивностей пробного и накачивающего пучков (рис.2а). Сверхтонкая оптическая накачка удаляет атомы из взаимодействия с накачивающим и пробным пучками, приводя к сильным сигналам пропускания пробного пучка для кроссовер-резонансов в режиме слабого насыщения переходов, по сравнению с закрытым переходом. Когда интенсивность пучка накачки выше I_s ($P_{BW} = 154 \text{ мкBT}$) (рис.2б), то закрытый переход $F_g = 2 - F_e = 3$ насыщается и сигнал пропускания возрастает в 4 раза по сравнению с увеличением в 3.2 и 1.7 раза сигналов для СО13 и СО23 резонансов (соотношение 6.5:12:4 при $T=25^{\circ}$ С). Это указывает на доминирующую роль сверхтонкой оптической накачки в формировании спектров кроссовер-резонансов, по сравнению с эффектом насыщения [8].

Возможной областью применения полученных результатов является стабилизация частоты диодных лазеров с привязкой к свободным от доплеровского уширения спектральным линиям.

Авторы выражают благодарность Д.Г.Саркисяну за предоставление сапфировой кюветы, использованной в эксперименте, и за обсуждения результатов.

ЛИТЕРАТУРА

- 1. S.Nakayama, G.W.Series, W.Gawlik. Optics Commun., 34, 382 (1980).
- 2. S.Nakayama. Jpn. J. Appl. Phys., 24, 1 (1985).
- Seung-Sab Kim, Sang-Eon Park, Ho-Seong Lee, Cha-Hwan Oh, Jong Dae Park, Hyuck Cho. Jpn. J. Appl. Phys., 32, part I, 3291 (1993).
- 4. Ho-Seong Lee, Sang-Eon Park, Jong Dae Park, Hyuck Cho. JOSA B, 11, 558 (1994).
- Ho-Seong Lee, Sung Hoon Yang, Young Bum Kim, Sang-Eon, Park, Hyuck Cho, Jong Dae Park. Jpn. J. Appl. Phys., 35, part 1, 276 (1996).
- 6. O.Schmidt, K.-M. Knaak, R.Wynnads, D.Meshede. Appl. Phys. B, 59, 167 (1994).
- C.P.Pearman, C.S.Adams, S.G.Cox, P.F.Griffin, D.A.Smith, I.G.Huges. J. Phys. B: At. Mol. Opt. Phys., 35, 5141 (2002).
- 8. D.A.Smith, I.G.Hughes. American J. Phys., 72, 631 (2004).
- R.Drampyan, A.D.Greentree, A.V.Durrant. In Proc. of National Conference "Laser Physics 2002", Ashtarak, Armenia, "Gitutyun" publ., 2003, pp.20-23.
- 10. Р.Х.Дрампян, А.Д.Гринтри, А.В.Даррант. Изв. НАН РА, Физика, 39, 373 (2004).
- Е.Б.Александров, Г.И.Хвостенко, М.П.Чайка. Интерференция атомных состояний. М., Наука, 1991.
- 12. A.M.Akulshin, S.Barreiro, A.Lezama. Phys. Rev. A, 57, 2996 (1998).
- 13. F.Renzoni, W.Maichen, L.Windholz, E.Arimondo. Phys. Rev. A, 55, 3710 (1997).

- Y.Dancheva, G.Alzetta, S.Cartaleva, M.Taslakov, Ch.Andreeva. Optics Commun., 178, 103 (2000).
- 15. G.Alzetta, S.Cartaleva, Y.Dancheva, Ch.Andreeva, S.Gozzini, L.Botti, A.Rossi. J. Opt. B: Quantum Semiclass. Opt., 3, 181 (2001).
- C.Andreeva, S.Cartaleva, Y.Dancheva, V.Biancalana, A.Burchianti, C.Marinelli, E.Mariotti, L.Moi, K.Nazyrov. Phys. Rev. A, 66, 012502-1 (2002).
- 17. F.Renzoni, C.Zimmermann, P.Verkerk, E.Arimondo. J. Opt. B: Quantum Semiclass. Optics, 3, S7 (2001).
- S.Svanberg, G.-Y.Yan, T.P.Duffey, W.-M.Du, T.W.Hansh, A.L.Shawlow. JOSA B, 4, 462 (1987).

ԱՐՏԱՔԻՆ ՄԱԳՆԻՍԱԿԱՆ ԴԱՇՏՈՒՄ ՌՈՒԲԻԴԻՈՒՄԻ ԱՏՈՄԻ ԴՈՊԼԵՐՅԱՆ ԼԱՅՆԱՅՈՒՄԻՑ ԱՉԱՏ ԿԼԱՆՄԱՆ ՀԱԳԵՑՄԱՆ ՍՊԵԿՏՐԱԴԻՏԻՄԸ

Ռ.Խ. ԴՐԱՄՓՅԱՆ, Ա.Դ. ԳՐԻՆՏՐԻ, Ա.Վ.ԴԱՐՐԱՆՏ

Հետազոտված են ռուբիդիումի ատոմների դոպլերյան լայնացումից ազատ սպեկտրները հանդիպակած փնջերի երկրաչափությունում, 0-12 Գս արտաքին մագնիսական դաշտում։ Իրականացված են փորձարարական պայմաններ, որոնք ի հայտ են բերում կլանման հագեցման, գերնուրբ օպտիկական մղման և կոհերենտ երևույթների դերը դոպլերյան լայնացումից ազատ սպեկտրների ձևավորման համար։

DOPPLER-FREE SATURATION ABSORPTION SPECTROSCOPY OF RUBIDIUM ATOMS IN AN EXTERNAL MAGNETIC FIELD

R. KH. DRAMPYAN, A.D. GREENTREE, A.V. DURRANT

Doppler-free spectra in the geometry of counter-propagating pump and probe beams for rubidium atoms in an external magnetic field 0-12 G are studied. The experimental conditions are realized, which reveal the role of saturation absorption, hyperfine optical pumping and coherent effects in formation of Doppler-free spectra.