УДК 548.0

простой кристаллический ондулятор

К.А. ИСПИРЯН, М.К. ИСПИРЯН

Ереванский физический институт

(Поступила в редакцию 16 февраля 2005 г.)

Предложен новый метод приготовления практичных кристаллических ондуляторов, в которых каналированные позитроны высоких энергий генерируют интенсивные пучки рентгеновских и гамма-квантов.

1. Введение

Учитывая, что источники синхротронного излучения очень громоздки и дороги, а проблемы конструирования портативных источников интенсивных и направленных пучков рентгеновских фотонов не решены, в настоящее время продолжается поиск новых методов генерации таких пучков. Кристаллическое ондуляторное излучение (КОИ), теория которого развивается с 1980г. (см.[1,2] и ссылки), является многообещающим процессом для создания таких пучков с помощью частиц относительно малых энергий Е, но, к сожалению, остается экспериментально не исследованным из-за отсутствия практических кристаллических ондуляторов (КО) с малым периодом L, порядка до нескольких сотен микрон. Напомним, что длина волны ондуляторного излучения равна $\lambda \approx L_u / \gamma^2$, где $\gamma = E / mc^2 = 1 / \sqrt{1 - \beta^2}$ – релятивистский фактор, а его интенсивность $I \sim A^2$, где A – амплитуда осцилляций электронов. В настоящее время созданы магнитные ондуляторы с минимальными периодами порядка миллиметров и опубликовано несколько предложений для создания КО с L_u меньше нескольких сотен микрон. Благодаря наличию сильных полей между периодически деформированными кристаллическими плоскостями в КО каналированные позитроны могут осциллировать с A≥10d_p, где d_p – расстояния между кристаллическими плоскостями порядка нескольких ангстрем.

Первоначально предложенный [1] метод создания КО с помощью ультразвуковых волн не реализован. Авторами [3] предложено создать КО с помощью сверхрешеток кристаллов Si_{1-x}Ge_x, в которых концентрация х атомов Ge, а следовательно, и период сверхрешетки меняются периодически. Однако рост таких кристаллов оказался нереальным. В [4] предложено создать КО из двойных тонких слоев чистого кремния и Si_{1-x}Ge_x с постоянным x, а в [5] – из слоев Si_{1-x}Ge_x с увеличивающимися значениями x, вырезанных из моно-

144

кристалла Si_{1-x}Ge_x с постоянным градиентом *x* [6]. Из-за больших трудностей методы [4,5] также не реализованы. Наконец, в работах [7] предложена и осуществлена конструкция КО, при которой тонким алмазным резцом наносятся линии с периодом 0.1–0.5 мм на кремниевых слоях с толщиной ~0.2 мм и шириной 2–5 мм. Как показано рентгенодифракционным методом, полученные КО имели $\hat{A} \approx 2-8$ нм, однако пока нет экспериментальных результатов по наблюдению КОИ.

Перед тем как описать новый метод, предложенный в настоящей работе, следует напомнить, что практически во всех ондуляторах поля отличаются от идеальных, например, от синусоид. Иногда это делается преднамеренно, с определенной целью [8]. Тем не менее, полученный результат всегда с большой точностью соответствует первой гармонике Фурье-разложения периодического поля в ондуляторе. С учетом этого обстоятельства предлагается создать КО, разрез которого схематически показан на рис. la. КО состоит из чередующихся N_u пар тонких слоев асимметричных кристаллов Si с размерами L_x, L_y и L_z , плоскости (110) которых составляют угол $\pm \alpha$ с нормалями к слоям. Полная толщина КО вдоль направления движения позитронов e^+ делается меньше длины деканалирования, $L_{KO} = N_u L_z < L_D$, L_x, L_y больше поперечных размеров пучка e^+ , а толщина каждого слоя L_z – так, чтобы иметь несколько колебаний каналирования с периодом $L_{ch} = \pi d_p \sqrt{E/(2U_0)}$ [9], где U_0 – глубина потенциальной ямы.

Рис.1. а) Разрез кристаллического ондулятора, b) приготовление слоев.

Каждый слой с размерами L_x, L_y, L_z изготавливается из доступных симметричных кремниевых лент различных толщин с кристаллическими осями [110], параллельными оси ОХ, механическим удалением слоя с сечением

клина с максимальной толщиной $\Delta L_z = L_z \sin \alpha$ (рис.1b). Такая обработка слоев кремниевых лент возможна при $L_x \approx L_y \approx (2-3) \,\mathrm{cm}$, $L_z \approx (10-100) \,\mathrm{\mu M}$ и $\Delta L_z \approx (0.5-2) \,\mathrm{\mu M}$. Далее пакет из $2N_u$ слоев с поочередно меняющимся углом асимметрии α с клеем или без клея затягивается болтами и гайками и укрепляется на подставке для ориентирования в гониометре.

Если угловой разброс пучка позитронов меньше критического угла $\theta_{cr} = \sqrt{2U(x_{cr})/E}$ [9], где $U(x_{cr})$ – потенциал в точке $x_{cr} = d_p - a_{TF}$ (a_{TF} – радиус Томаса-Ферми), то большая часть пучка каналируется [10] и в дальнейшем при переходе из одного слоя к другому остается каналированной, так как $L_{KO} < L_D$, а среднеквадратичный угол многократного рассеяния $\theta_{ms} < \theta_{cr}$. На рис.1 показана траектория каналированного позитрона, который, кроме осцилляций с малым периодом L_{ch} и амплитудой $A_{ch} < d_p$ из-за каналирования, совершает зигзагообразные осцилляции с большим периодом $L_v = 2L$, и амплитудой $A = L_z \alpha > d_p$.

В табл.1 приведены вышеуказанные параметры КО, сделанных для плоскости (110) Si при двух энергиях позитронов, значения их ондуляторного параметра $K = 2\pi A \gamma / L_u$, а также ожидаемой области энергии, $\hbar \omega_1 - \hbar \omega_2$, и полного числа N_{ph} фотонов КОИ, излученных одним электроном без учета потерь в КО и эффективности детектирования, вычисленные по формулам [2], с учетом только первой синусоидальной гармоники движения.

<i>E</i> ,	L_D ,	θ_{cr} ,	L_{ch} ,	L_z ,	α,	Α,	K	N_u	$\hbar\omega_1 - \hbar\omega_2$,	N _{ph}
ГэВ	СМ	мрад	μм	μм	мрад	HM			кэВ	
10	0,8	0,057	8,9	100	0.03	3	1.85	30	82-1707	0,15
2	0.12	0,127	4	25	0.06	1,5	0,74	20	20-605	0,025

Табл.1. Основные параметры КО и КОИ.

В заключение отметим, что, как показывают результаты настоящей работы, предложенным методом можно построить практичные КО, обеспечивающие интенсивные пучки жестких фотонов. Более подробные результаты, полученные более точной теорией и численным симулированием всех процессов, не предполагая доминантности вклада первой гармоники КО, и необходимые до эксперимента по первому наблюдению КОИ и эффектов сужения спектрального и углового распределений КОИ [2], будут опубликованы позже.

ЛИТЕРАТУРА

- 1. В.В. Каплин, С.В. Плотников, С.А. Воробьев. ЖТФ, 50, 1079 (1980).
- R.O.Avakian, L.A.Gevorgian, K.A.Ispirian, R.K.Ispirian. Pisma Zh. Eksp. Teor. Fiz., 68, 437 (1998); Nucl. Instr. and Meth. B, 173, 112 (2001).
- 3. U.Mikkelsen, E.Uggerhoj. Nucl. Instr. and Meth. B, 160, 435 (2000).
- R.O.Avakian, K.Avetian, K.A.Ispirian, E.G.Melikian, Proc. of NATO ARS Workshop, Electron-Photon Interaction in Dense Media, June 25-29, 2001, Nor Hamberd, Armenia, NATO Sc. Ser. Math. Phys. Chem., 49, p.277; Nucl. Instr. and Meth. A, 492, 11 (2002).

- 5. R.O.Avakian, K.Avetian, K.A.Ispirian, E.G.Melikian. Nucl. Instr. and Meth. A, 508, 496 (2003); Изв. НАН Армении, Физика, 38, 43 (2003).
- N.V.Abrosimov et al. J. Crystal Growth, 166, 657 (1966); A.Erko et al., Nucl Instr. and Meth. A, 374, 408 (1996).
- S.Bellucci et al. Phys. Rev. Lett. 90, 03480 (2003); Phys. Rev. Spec. Topics, AB, 7, 023501 (2004).
- 8. R.O.Avakian, L.A.Gevorgian, K.A.Ispirian, A.H.Shamamian. Nucl. Instr. and Meth. B, 227, 104 (2005).
- V.M.Biryukov, Yu.A.Chesnokov, V.I.Kotov. Crystal Channeling and Its Application at High-Energy Accelerators. Springer, Berlin, 1997.
- 10. S.M.Darbinian, K.A.Ispirian. Phys. Stat. Sol. (b), 96, 835 (1979).

ՊԱՐՉ ԲՅՈՒՐԵՂԱՅԻՆ ՕՆԴՈՒԼԱՏՈՐՆԵՐ

Կ.Ա. ԻՍՊԻՐՅԱՆ, Մ.Կ. ԻՍՊԻՐՅԱՆ

Առաջարկված է բյուրեղային օնդուլատորների պատրաստման նոր մեթոդ, որ հնարավորություն կտա կանալավորված բարձր էներգիաներով պոզիտրոնների միջոցով ստանալ ռենտգենյան և գամմա քվանտների ինտենսիվ փնջեր։

SIMPLE CRYSTALLINE UNDULATORS

K.A. ISPIRIAN, M.K. ISPIRYAN

A new method for construction of practical crystalline undulators is proposed which provides intense beams of X-ray and gamma quanta with the use of channeled high-energy positrons.