Известия НАН Армении, Физика, т.40, №2, с.125-132 (2005)

УДК 621.315

ВЛИЯНИЕ ОДНОРОДНОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА ЭКСИТОННЫЕ СОСТОЯНИЯ В КВАНТОВАННОЙ НИТИ

В.А. АРУТЮНЯН

Гюмрийский филиал государственного инженерного университета Армении

Г.Ш. ПЕТРОСЯН

Арцахский государственный университет

(Поступила в редакцию 9 октября 2004 г.)

В квазиклассическом приближении рассмотрены состояния электроннодырочной пары в квантованной цилиндрической нити при наличии однородного электрического поля. Получена зависимость вероятности ионизации одномерного экситона от величины внешнего поля. Рассчитан коэффициент экситонного поглощения для области частот вдали от резонанса.

1. Введение

Наряду со многими низкоразмерными полупроводниками в последнее время интенсивно исследуются также различные нанокристаллические структуры с одной степенью свободы. В частности, большое количество теоретических и экспериментальных работ посвящено исследованию экситонных состояний в нитевидных кристаллах (см., например, [1-6]). Подобная "популярность" исследования 1D экситонов обусловлена тем обстоятельством, что с понижением размерности системы наблюдается значительное увеличение энергии связи электронно-дырочной пары [1-9], что существенным образом влияет на оптические свойства образца. В частности, в одномерных и нульмерных нанокристаллах экситонный механизм фотолюминесценции практически полностью доминирует по сравнению с другими механизмами излучательной рекомбинации [3-6,10-13]. В связи со сказанным определенный интерес представляет также исследование влияния внешних статических полей на экситонные состояния в подобных структурах.

В настоящей работе рассмотрено влияние однородного электрического поля на экситонные состояния в квантованной цилиндрической нити, когда поле направлено вдоль оси симметрии системы.

2. Электронно-дырочная пара в электрическом поле

Из ряда моделей, адекватно описывающих одномерные водородопо-

добные состояния (см., например, [2-5,8,14-17]), мы рассмотрим случай, когда потенциал притяжения между электроном и дыркой в квантованной нити имеет следующий вид [15-17]:

$$V(z) = -\frac{\gamma}{|z|+a},\tag{1}$$

где γ – "константа" взаимодействия между электроном и дыркой в нити, z – расстояние между электроном и дыркой. "Подгоночный" параметр a по величине значительно меньше радиуса нити [17], который в свою очередь удовлетворяет условию

$$R^2 << a_0^2$$
, (2)

где *a*₀ – боровский радиус объемного экситона в материале нити.

В приближении эффективной массы решения одномерного уравнения Шредингера с потенциалом (1) даются функциями Уиттекера [16,17]:

$$\psi_{ex}(z) = N_{\beta_n} W_{\beta_n, \frac{1}{2}} \left(\frac{2|z| + a}{\beta_n a_0} \right), \tag{3}$$

где нормировочная константа N_{в.} задается выражением

$$N_{\beta_n} = \left\{ \frac{a_0 \beta_n^3}{2} \left[W_{\beta_n, \frac{1}{2}} \cdot \frac{\partial W_{\beta_n, \frac{1}{2}}}{\partial \beta_n} \right]_{z=0} \right\}^{-1}$$

а параметр β_n принимает следующие значения: a) $\beta_n = n + \delta_n$ при n = 1, 2, ...;б) $\beta_0 = \delta_0$ при n = 0; причем:

$$\delta_n, \, \delta_0 \ll 1 \, ; \quad \frac{\delta_{n+1}}{\delta_n} \ll 1 \, . \tag{4}$$

Если внешнее поле направлено вдоль оси *z*, то соответствующее уравнение Шредингера для пары принимает следующий вид:

$$-\frac{\hbar^2}{2\mu} \cdot \frac{d^2\psi}{dz^2} - \frac{\gamma}{|z| + a}\psi - Fz\psi = E\psi, \qquad (5)$$

где μ – приведенная эффективная масса электрона и дырки, *F* – сила, действующая со стороны поля на частицу, *E* – энергия пары.

Введем обозначения

$$\left|\frac{\varepsilon_0}{\beta^2}\right| = E \equiv K^2; \quad \varepsilon_0 = -\frac{\hbar^2}{2\mu a_0^2}; \quad a_0 = \frac{\hbar^2}{\mu\gamma}; \quad \gamma = 2\varepsilon_0 a_0. \tag{6}$$

На внешнее поле налагаем единственное ограничение

$$\frac{Fa_0}{\varepsilon_0} \ll 1, \tag{7}$$

которое физически означает, что внешнее поле значительно меньше "внутриатомного"-внутриэкситонного, т.е. далеко от своего предыонизационного порогового значения. При выполнении условия (7) уравнение (5), по аналогии с 3D и 2D случаями [18,19], можно решить в квазиклассическом приближении.

Внешнее поле, наложенное на потенциал (1), создает в области отрицательных энергий потенциальный барьер

$$U(z) = -\frac{2\varepsilon_0 a_0}{z+a} - F \cdot z; \quad (z > 0).$$
(8)

Положение экстремума (*z_m*) потенциального барьера (8) находится в области "больших" значений переменной *z*:

$$z_m = a_0 \sqrt{\frac{2\varepsilon_0}{Fa_0}} , \qquad (9)$$

а само экстремальное значение потенциала (8)

$$\left| U_m(z_m) \right| \cong \varepsilon_0 \sqrt{\frac{Fa_0}{\varepsilon_0}} , \qquad (10)$$

как видим, приходится на область сильно возбужденных состояний. Классические точки поворота следующие:

$$z_1 \cong 2a_0\beta^2; \quad z_2 \cong \frac{\varepsilon_0}{F\beta^2}.$$
 (11)

Из сравнения (9) и (11) ясно, что под барьером есть конечный интервал значений переменной *z*, для которых выполняется условие

$$z_1 \ll z \ll z_2$$
. (12)

Условие применимости квазиклассического приближения для уравнения (5) в общем виде следующее:

$$\frac{\mu\hbar \left| \frac{\partial U(z)}{\partial z} \right|}{P^3(z)} <<1,$$
(13)

где P(z) – классический импульс:

$$|P(z)| = \left\{ 2\mu \left| (K^2 - \frac{2a_0\varepsilon_0}{z+a} - F \cdot z) \right| \right\}^{\frac{1}{2}}.$$
 (14)

Учитывая условие (7), нетрудно видеть, что условие квазиклассичности (13) будет выполняться для значений z из интервала (12).

Одновременно также нетрудно видеть, что при значениях переменной *z* таких, что

$$z_1 \ll z \ll z_m; \quad (z_1 \ll z \ll z_2), \tag{15}$$

еще можно пренебречь внешним полем по сравнению с кулоновским потенциалом (1). Из сказанного ясно, что для определения экситонной волновой функции можно провести в какой-либо точке "сшивку" квазиклассической волновой функции с учетом наличия внешнего поля $\psi_{qc}(z)$ с "чисто" кулоновской волновой функцией (3) при "больших" значениях аргумента:

$$\psi_{ex}(\bar{z}) = \psi_{qc}(\bar{z}), \qquad (16)$$

где \bar{z} – значение переменной z в точке "сшивки" из интервала (15). Правее правой точки поворота ($z > z_2$), когда экситон полностью ионизирован, квазиклассическая волновая функция будет иметь следующий вид [20]:

$$\psi_{qc}(z) = \frac{C}{\sqrt{P(z)}} \exp\left\{\frac{i}{\hbar} \int_{Z_2}^{Z} P(z) dz + \frac{i\pi}{4}\right\},\tag{1.7}$$

где С – постоянная нормировки.

Воспользовавшись теперь асимптотическим разложением функции Уиттекера для больших значений аргумента [21] и учитывая изменение вида функции (17) при переходе в классически недоступную область $z_1 < z < z_2$, после "сшивки" получаем:

$$\psi_{qc}(z) \cong N_{\beta} \left[\frac{2\mu K^2}{P^2(z)} \right]^{\frac{1}{4}} \exp\left\{ -\frac{3}{4\sqrt{\varepsilon_0}} \cdot \frac{K^3}{Fa_0} + \frac{\sqrt{\varepsilon_0}}{K} \ln \frac{K^3}{\sqrt{\varepsilon_0} \cdot Fa_0} \right\},\tag{18}$$

где опущены несущественные в дальнейшем фазовые множители.

Вероятность ионизации под действием поля будет определяться в данном случае следующим выражением:

$$w_n = \left| \psi_{qc}(\beta_n, z) \right|^2 \cdot v_z , \qquad (19)$$

где $v_z = P(z)/\mu$ – скорость вдоль оси z. Из (18),(19) соответственно получаем:

$$w_n = \left(\frac{2K^2}{\mu}\right)^{\frac{1}{2}} \left|N_{\beta}\right|^2 \exp\left\{-\frac{3}{2\sqrt{\varepsilon_0}} \cdot \frac{K^3}{Fa_0} + \frac{2\sqrt{\varepsilon_0}}{K} \ln \frac{K^3}{\sqrt{\varepsilon_0} \cdot Fa_0}\right\}.$$
 (20)

3. Экситонные переходы в присутствии поля

Ограничимся рассмотрением поглощения в области, далекой от резо-

нанса. Специфика оптических переходов при учете экситонных эффектов, как известно, определяется экситонным множителем $|\psi(0)|^2$. При этом величина *K* будет определяться зонными энергетическими параметрами:

$$K^{2} = \Delta_{g}^{e,h} - \hbar\omega \equiv K_{\beta,e,h}^{2}, \qquad (21)$$

где ω – частота фотона, а $\Delta_g^{e,h}$ – ширина запрещенной зоны с учетом поперечного квантования движения носителей заряда в нити.

Из (18) для "парциального" экситонного множителя, описывающего переход из "одномерной" подзоны (*h*) валентной зоны в "одномерную" же подзону (*e*) зоны проводимости, под которой "подвешены" экситонные состояния (*β_n*), получаем:

$$\alpha_{n,e,h} = \left| \psi_{\beta_n,e,h}(0) \right|^2 = \left| N_{\beta_n} \right|^2 \left(\frac{a}{a_0} \frac{K_{\beta,e,h}^2}{\varepsilon_0} \right)^{\frac{1}{2}} \cdot \exp\left\{ -\frac{3}{2\sqrt{\varepsilon_0}} \cdot \frac{K_{\beta,e,h}^3}{Fa_0} + \frac{2\sqrt{\varepsilon_0}}{K_{n,e,h}} \ln \frac{3K_{\beta,e,h}^3}{4\sqrt{\varepsilon_0}Fa_0} \right\}$$
(22)

Для "полного" экситонного множителя соответственно можно получить:

$$\alpha_{ex} = \sum_{n} \sum_{e,h} \left| \psi_{\beta_n, e, h}(0) \right|^2$$

4. Заключение

На основе результатов, полученных в работе, можно заключить следующее:

1. Внешнее поле в области отрицательных энергий создает потенциальный барьер, вледствие чего даже в случае сравнительно "слабых" полей будет наблюдаться ионизация 1D экситона.

2. Из (20) следует, что с увеличением величины поля вероятность ионизации возрастает.

3. Из (21)-(22) ясно, что вследствие наличия поля в нити возможны экситонные переходы и при частотах, меньших значения пороговой частоты межзонного перехода, с образованием экситона.

4. С увеличением дефицита энергии фотона поглощение в "запрещенной" области частот уменьшается.

5. Зависимость поглощения от величины внешнего поля в рассматриваемом случае более слабая, чем при экситонных переходах в массивном образце [18] и пленке [19], где экспоненциальная зависимость от внешнего поля модулировалась также предэкспоненциальным полевым множителем (соответственно, F и \sqrt{F}), в то время как в выражении (22) таковой отсутствует. Подобное ослабление полевой зависимости обусловлено увеличением энергии связи экситона вследствие понижения размерности системы и "сопутствующего" этому т.н. эффекта диэлектрического усиле-ния [2,10].

Приложение

В работе [10] приведены результаты эксперимента по линейному поглощению 1D экситонов в квантовых нитях GaAs и CdSe, кристаллизованных в прозрачной диэлектрической матрице внутри хризотил-асбестовых нанотрубок. Диаметр нитей менялся в пределах 4,8–6 нм. Рассмотрим развитый в нашей работе модельный подход применительно к нити арсенида галлия. В таблице 1 приведены физические характеристики (данные взяты из [10,22]) и энергетические параметры квантовой нити GaAs при радиусе 3 нм.

Е	$\frac{m_e}{m_0}$	$\frac{m_h}{m_0}$	Е _g (эв)	<i>R</i> (нм)	а ₀ (нм)	Е ₀ (мэв)	Е _{conf} (мэв)	∆ ^{е,h} (эв)
12	0,07	0,5	1,43	3	10,4	5,7	71,4	1,5

	-	
1 2	OTHIN	
1 4	Unnita	

Здесь ε – статическая диэлектрическая проницаемость, m_0 – масса свободного электрона, m_e , m_h – эффективные массы электрона и дырки, соответственно, E_{conf} – уширение запрещенной зоны за счет энергии размерного квантования носителей заряда в поперечном направлении. Из таблицы ясно, что в данном случае энергия связи 3D экситона много меньше энергии размерного квантования и кулоновское взаимодействие будет существенно именно вдоль оси симметрии. В случае приведенных численных данных получаем также, что условие (7) будет выполняться для полей, напряженность которых меньше 10³ В/см.

Поскольку полевая зависимость поглощения определяется только показателем экспоненты в (22), рассмотрим его поведение при параметрах из Табл.1. Представим показатель экспоненты в следующем виде:.

$$f(F,\Omega) = -\frac{3}{2}\Omega^{3/2} \left(\frac{\Delta_g}{\varepsilon_0}\right)^{1/2} \cdot \frac{\Delta_g}{Fa_0} + 2 \cdot \left(\frac{\varepsilon_0}{\Delta_g}\right)^{1/2} \cdot \Omega^{-1/2} \cdot \ln\left[\frac{3}{4}\Omega^{3/2} \left(\frac{\Delta_g}{\varepsilon_0}\right)^{1/2} \cdot \frac{\Delta_g}{Fa_0}\right], \quad (\Pi.1)$$

где $\Omega = \frac{\Delta_g - \hbar \omega}{\Delta_g}; \quad \Delta_g \equiv \Delta_g^{e,h}.$

На рис.1 приведены графики частотной зависимости функции (П.1) при изменении параметра расстройки Ω в пределах от 0,1 до 0,3. Кривые 1,2,3 соответствуют значениям напряженности внешнего поля 10^2 B/см, $5 \cdot 10^2$ B/см, 10^3 B/см.

На рис.2 показана зависимость функции (П.1) от величины внешнего поля, когда его напряженность меняется в пределах от 10^2 до 10^3 В/см. Кривые 1,2,3 соответствуют значениям параметра расстройки 0,1; 0,2; 0,3.

Рис.2.

В заключение авторы выражают благодарность С.Л.Арутюняну и Г.О.Демирчяну за полезные обсуждения и помощь при выполнении работы.

Настоящая работа выполнена в рамках государственной целевой программы Республики Армения "Полупроводниковая наноэлектроника".

ЛИТЕРАТУРА

- 1. M.G.Lisachenko et al. Phys. St. Sol., A182, 297 (2000).
- 2. L.V.Keldysh. Phys. St. Sol., A164, 3 (1997).
- 3. Е.А.Муляров, С.Г.Тиходеев. ЖЭТФ, 111, 274 (1997).
- 4. E.A.Muljarov et al. Phys. Rev., B 51, 14370 (1995).
- 5. E.A.Muljarov et al. Phys. Rev., B 62, 7420 (2000).
- 6. T.Ishihara, in Optical Properties of Low-Dimensional Materials. World Scientific, Singapore, 1995.
- 7. Л.В.Келдыш. Письма в ЖЭТФ, 29, 716 (1979).
- 8. В.С.Бабиченко, Л.В.Келдыш, А.П.Силин. ФТТ, 22, 1238 (1980).
- 9. Н.С.Рытова. Вестник МГУ, Физика, 3, 30 (1967).
- 10. В.С.Днепровский и др. ЖЭТФ, 114, 700 (1998).
- 11. В.С.Днепровский и др. ЖЭТФ, **121**, 1362 (2002).
- 12. E.A.Zhukov et al. Sol. St. Commun., 112, 575 (1999).
- 13. А.В.Саченко, Ю.В.Крюченко. ФТП, 38, 102 (2004).
- 14. D.S.Chuu, C.M.Hsiao, W.N.Mei. Phys. Rev., B46, 3898 (1992).

- 15. R.T.Elliot, R.London, J. Phys. Chem. Sol., 15, 196 (1960).
- 16. H. Hasegawa, R.E. Howard. J. Phys. Chem. Sol., 21, 179 (1961).

17. С.Л. Арутюнян, Э.М. Казарян. Изв. АН Арм. ССР, Физика, 12, 16 (1977).

- 18. A.G. Aronov, A.S. Ioselevich. Exciton Electrooptics. Amsterdam, 1982.
- 19. V.Haroutyunian, S.Haroutyunian, E.Kazarian. Thin Sol. Films, 323, 209 (1998).
- Л.Д.Ландау, Е.М.Лифшиц. Квантовая механика (нерелятивистская теория), т.III. М., Наука, 1974.
- 21. **Н.С.Градштейн, И.М.Рыжик.** Таблицы интегралов, сумм, рядов и произведений. М., Наука, 1971.
- 22. Таблицы физических величин. Справочник (под. ред. И.К.Кикоина). М., Наука, 1976.

ՀԱՄԱՍԵՌ ԷԼԵԿՏՐԱԿԱՆ ԴԱՇՏԻ ԱՋԴԵՑՈՒԹՅՈՒՆԸ ԷՔՍԻՏՈՆԱՅԻՆ ՎԻճԱԿՆԵՐԻ ՎՐԱ ՔՎԱՆՏԱՑՎԱԾ ԼԱՐՈՒՄ

Վ.Ա. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Հ.Շ. ՊԵՏՐՈՍՅԱՆ

Քվազիդասական մոտավորությամբ դիտարկված են էլեկտրոն-խոռոչ զույգի վիճակները քվանտացված գլանաձև լարում համասեռ էլեկտրական դաշտի առկայության դեպքում։ Ստացված է միաչափ էքսիտոնի իոնիզացման հավանականության կախումը արտաքին դաշտի մեծությունից։ Հաշվարկված է էքսիտոնային կլանման գործակիցը ռեզոնանսից հեռու գտնվող հաճախությունների տիրույթի համար։

INFLUENCE OF HOMOGENEOUS ELECTRIC FIELD ON THE EXCITON STATES IN A QUANTIZED WIRE

V.A. HARUTYUNYAN, H. SH. PETROSYAN

In the quasi-classical approximation we consider the states of electron-hole pairs in a quantized cylindrical wire when a homogeneous electric field is present. The dependence of the ionization probability of a one-dimensional exciton on the external field is obtained. The coefficient of excitonic absorption for the range of frequencies far from the resonance is calculated.

24 Multimer et al. Plan, Roy B 62, 24 5. Multimer, a Connect magerine, or 5. Multimer, a Connect magerine, or 5. Multimer, and Connect Magerine, and 5. Multimer, and S. Multimer, S. Mu