Известия НАН Армении, Физика, т.39, №1, с.60-64 (2004)

УДК 538.975

ЭЛЕКТРОННО-ЛУЧЕВОЕ НАПЫЛЕНИЕ ПЛЕНОК ГЕКСАБОРИДА ЛАНТАНА-ЦЕРИЯ. ИССЛЕДОВАНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ И КОЭФФИЦИЕНТА ЗЕЕБЕКА

С.Р. АРУТЮНЯН¹, В.О. ВАРТАНЯН¹, Г.Р. БАДАЛЯН¹, С.И. ПЕТРОСЯН¹, В.Р. НИКОГОСЯН¹, В.Т. ТАТОЯН¹, А.С. КУЗАНЯН¹, А.М. ГУЛЯН²

¹ Институт физических исследований НАН Армении,

² USRA/NRL, Washington DC, USA

(Поступила в редакцию 10 марта 2003 г.)

На различных подложках методом электронно-лучевого напыления синтезированы тонкие пленки гексаборида лантана с примесью церия – термоэлектрического материала, перспективного для низкотемпературных применений. Исследованы удельное сопротивление и коэффициент Зеебека, пленок в области температур 3÷300 К. При температурах ниже 20 К на зависимостях $\rho(T)$ и S(T) выявлены свойственные эффекту Кондо особенности. Обнаружено, что характер температурной зависимости коэффициента Зеебека, параметры металличности и Кондо-рассеяния исследованных пленок обусловлены материалом подложки и температурой напыления.

1. Введение

Термоэлектрический эффект имеет многочисленные применения в науке и технике. Задача получения новых материалов с высокими термоэлектрическими свойствами актуальна и может являться основой как для создания более эффективных известных термоэлектрических устройств, так и для разработки новых типов устройств. Эффективность использования в термоэлектрических устройствах зависит от параметра качества материала Z, который определяется из выражения $Z = S^2 / \rho k$, где S - коэффициент Зеебека, ρ электрическое удельное сопротивление и k – коэффициент теплопроводности материала. Гексаборид лантана с примесью церия (~1%) является Кондосистемой с рядом аномалий кинетических свойств при низких температурах. Так, в работах [1-4], посвященных исследованию объемных образцов (La,Ce)В, наблюдались аномальное поведение электросопротивления [1,2], пик теплоемкости и термоэдс [3,4] при низких температурах. Приведенные в работах [3,4] значения коэффициента Зеебека ($S \sim 80 \text{ мкB/K}$ при $T \sim 1 \text{K}$) и соответствующие им оценки параметра качества Z~0.47 [5] позволяют рассматривать (La,Ce)В, как перспективный материал для создания термоэлектрических холодильников и термоэлектрических детекторов УФ и рентгеновского

диапазона [6,7]. В этом плане актуальна задача синтеза и исследования электрофизических характеристик пленочных образцов (La,Ce)В,

В настоящей работе приводятся результаты исследования температурной зависимости удельного сопротивления и коэффициента Зеебека тонких пленок (LaCe)В₆, синтезированных на подложках Si, Al₂O₃, MgO и ситалла методом электронно-лучевого напыления.

2. Методика эксперимента

Условия синтеза пленок, их микроструктура и рентгеновские характеристики описаны в [8]. Для измерения термоэдс тонких пленок (La,Ce)В₆ был использован метод, основанный на прямом измерении напряжения вдоль пленки, на которой создается температурный градиент. При этом была осуществлена схема измерений, подобная описанной в [9]. Разность температур измерялась дифференциальной термопарой медь – константан. Так как потенциальными выводами служили провода из меди, то коэффициент Зеебека пленок ($S_{n,n}$) определялся из выражения $S_{n,n} = \Delta U/\Delta T + S_{Cu}$, где ΔU и ΔT – измеряемые на образце разность потенциалов и температур, S_{Cu} – коэффициент зеебека медного провода. Отметим, что S_{Cu} был определен предварительно из эксперимента в той же схеме, когда пленочным образцом являлась сверхпроводящая пленка YBa₂Cu₃0_{7-б} с критической температурой $T_c \sim 90$ К. Как известно, при $T < T_c$ термоэдс сверхпроводящей пленки зануляется, и можно определить S_{Cu} . Для температур, превосходящих 90 К, значения S_{Cu} мало зависят от примесей и взяты из работь: [10].

Удельное сопротивление пленок измерялось стандартным четырехзондовым методом на постоянном токе. Измерения как удельного сопротивления, так и коэффициента Зеебека проводились в вакууме в диапазоне температур 3 – 300 К, который обеспечивался рефрижератором замкнутого цикла ST 405 «Cryomech». Исследованные пленки имели средние размеры 10 мм×10 мм×0.7 мкм. Для сравнения были измерены также характеристики керамического стержня La_{0.99}Ce_{0.01}B₆ с размерами 14 мм×1,5 мм×1,5 мм.

3. Результаты и обсуждение

3.1. Исследование удельного сопротивления

Результаты измерения температурной зависимости удельного сопротивления $\rho(T)$ пленок (La,Ce)B₆ для различных подложек приведены на рис.1. Сопротивление всех пленок с понижением температуры уменьшается. Наименьшими значениями ρ , наиболее близкими к величине ρ объемных образцов, обладают пленки на Si подложках (рис.1b). Удельное сопротивление пленок монотонно уменьшается до температуры 20 К и затем начинает возрастать. Такое поведение $\rho(T)$ характерно для системы (La,Ce)B₆ и является признаком присутствия эффекта Кондо. Этот эффект в данном соединении обусловлен рассеянием носителей заряда на магнитных (s = 1/2) примесях

Рис.1. Температурная зависимость удельного сопротивления пленок (La,Ce)B₆ на различных подложках и керамики La_{0.99},Ce_{0.01}B₆.

Се³⁺. Для сравнения пленок с монокристаллами мы рассматриваем безразмерные параметры металличности и Кондо-рассеяния, равные соответственно отношениям $\rho(77 \text{ K})/\rho(300 \text{ K})$, $\Delta \rho/\rho_{\min}$, где $\Delta \rho = \rho(3 \text{ K}) - \rho_{\min}$, $\rho_{\min} \approx \rho(20 \text{ K})$. Монокристаллы $\text{La}_{0.99}\text{Ce}_{0.01}\text{B}_6$ имеют удельные сопротивления $\rho(300 \text{ K}) = 8 \div 9 \text{ мкОм} \cdot \text{см}$ и $\rho(77 \text{ K}) = 1.8 \text{ мкОм} \cdot \text{см}$, а параметры металличности и Кондо-рассеяния равны соответственно 0,21 и 1,5. Причем, параметр $\rho(77 \text{ K})/\rho(300 \text{ K})$ минимален, а $\Delta \rho/\rho_{\min}$ максимален при концентрации ионов Ce³⁺ 1ат.%. Для керамического образца $\text{La}_{0.99}\text{Ce}_{0.01}\text{B}_6$ параметры $\rho(77 \text{ K})/\rho(300 \text{ K})$, $\Delta \rho/\rho_{\min}$ составили соответственно 0,22 и 0,88. Параметры $\rho(77 \text{ K})/\rho(300 \text{ K})$, на границах зерен. Пленки (La,Ce)B₆ на Si подложках отличаются наибольшими значениями величин Кондо-рассеяния и лучшей металличностью среди пленок на других подложках, однако даже они уступают керамике по указанным параметрам. Это, вероятно, обусловлено как неоптимальностью концентрации ионов Ce³⁺ в пленках, так и присутствием в них неконтролируемых примесей, напряжений и слабосвязанных зерен.

Исследование зависимостей параметров Кондо-рассеяния и металличности от температуры напыления пленок (Т,) показало, что параметр Кондорассеяния независимо от подложки, на которой напылена пленка, имеет тенденцию роста с повышением T_d и максимален при T_d~1000°C. Так, полученные максимальные величины параметра Кондо-рассеяния для пленок на подложках Si, Al₂O₃, MgO, ситалл составляют 0,16; 0,013; 0,006; 0,002, соответственно. При этом, у пленок на Si при всех T_d параметр Кондо-рассеяния остается значительно выше, чем у пленок на остальных подложках. Параметр металличности пленок независимо от подложки улучшается по мере увеличения Т, и достигает величин 0,36; 0,74; 0,87; 0,92 для пленок на подложках Si, Al,O., MgO, ситалл, соответственно. При этом параметр металличности пленок на Si во всем интервале температур напыления меньше, чем у пленок на других подложках. Улучшение параметров как Кондо-рассеяния, так и металличности с повышением температуры напыления, вероятно, обусловлено изменением в пленках соотношения La/Ce/B и улучшением межгранулярных связей. Для пленок на Si подложках при высоких T_d происходит диффузия кремния из пленки в подложку, которая является причиной существенного отличия *р* этих пленок и пленок на других подложках.

3.2. Исследование коэффициента Зеебека

На рис.2 приведены температурные зависимости коэффициента Зеебека S(T) пленок (La,Ce)B₆. Характер этих кривых определяется как материалом подложки, так и температурой напыления. Отметим, что на каждом рисунке приводятся сведения об образцах – подложка, ρ , T_d , а также S(T) керамического образца La_{0.99}Ce_{0.01}B₆.

По виду кривых S(T) пленки разделены на три группы. К первой группе (рис.2а) отнесены пленки, на температурных зависимостях которых не имеется никаких аномалий, характерных для Кондо-систем, и ход кривой S(T) при T > 50 К подобен ходу S(T) керамического образца. Ко второй группе (рис.2b) отнесены пленки, у которых на S(T) не имеется низкотемпературных аномалий, характерных для Кондо-систем, но присутствует выраженный пик коэффициента Зеебека при T = 80 К. К третьей группе отнесены пленки (рис.2с), у которых на S(T) обнаружен несколько меньший по величине, чем для второй группы, пик термоэдс при T = 80 К и довольно резкий подъем значений коэффициента Зеебека при понижении температуры до 4 К. Отметим, что пленки второй и третьей группы синтезированы на Si подложках. Пик термоэдс при T = 80 К мы приписываем наличию фазы, обусловленной взаимодействием (La,Ce)B₆ с подложкой.

Рис.2. Температурная зависимость коэффициента термоэдс пленок (La,Ce) B_6 на различных подложках и керамики La $_{0.99}Ce_{0.01}B_6$.

Величина *S* пленок при T < 25 К меньше, чем у керамики (рис.2с), что может быть обусловлено неоптимальной концентрацией ионов Се, присутствием в пленках неконтролируемых примесей, напряжений, слабосвязанных зерен и фазы, ответственной за максимум *S* при 80К. Присутствие этой фазы может в значительной степени уменьшить величину *S* пленок третьей группы при T > 25 К, поскольку *S*(*T*) образцов второй группы имеют тенденцию перехода значений *S* в отрицательную область (рис.2b).

Величина значений коэффициента Зеебека при T = 4,5 К существенно зависит от температуры напыления T_d , и для всех измеренных образцов наблюдается увеличение значений S с увеличением T_d . Изучение зависимостей значений коэффициента Зеебека при T = 4,5 К от $\rho(300$ К) и параметра Кондорассеяния $\Delta \rho / \rho_{min}$ показывает, что величины коэффициента термоэдс увеличиваются с уменьшением значений удельного сопротивления при $\rho(300$ К) и увеличением параметра Кондо-рассеяния. Исследования выявили также, что максимальные значения коэффициента Зеебека при T = 4.5 К получены для пленок, синтезированных на Si подложках.

4. Заключение

Основным результатом работы является обнаружение эффекта Кондо в тонких пленках номинального состава (La,Ce)B₆ при температурах ниже 20 К. Исследованы зависимости $\rho(T)$ и S(T) пленок, напыленных на различные подложки при различных температурах. Пленки на Si подложках при $T_d > 800$ К имеют наиболее близкие к объемным образцам значения ρ (300 K), S(4.5K) и параметров $\rho(77 \text{ K})/\rho(300 \text{ K}), \Delta \rho/\rho_{min}$. Однако они ещё уступают по своим электрофизическим характеристикам объемным образцам. Диффузия кремния из подложки в пленку, происходящая при $T_d > 800$ К, приводит к возникновению максимума на зависимости S(T) при 80 К, что в свою очередь является одной из причин низких значений S(4.5K). Другими факторами, приводящими к низким значениям S(4.5 K) и высоким значениям $\rho(4,5K)$ пленок, являются отклонение от стехиометрии (соотношение La/Ce/B), наличие неконтролируемых примесей и особенности микроструктуры. Улучшение характеристик пленок связано с дальнейшей оптимизацией условий синтеза и получением монокристаллических пленок (La,Ce)B₆.

Работа поддержана Министерством науки и образования Армении и грантом NATO SfP No.974082.

ЛИТЕРАТУРА

1. K.Winzer. Solid'State Com., 16, 521 (1975).

- 2. K.Sammer and K.Winzer. Physik B, 25, 269 (1976).
- 3. H.J.Ernst, H.Gruhl, T.Krug, and K.Winzer. Proc. Int. Conf. LT-17, AL3, 137 (1984).
- 4. N.E.Bickers, D.I.Cox, and J.W.Wilkins. Phys. Rev. Lett., 54, 230 (1985).
- 5. A.Kuzanyan, G.Badalyan, et al. Mat. Res. Soc. Symp., 626, 43, Z8.21 (2000).
- 6. A.Gulian, K.Wood, G.Fritz, et al. NIMA, 441, 35 (2000).
- G.G.Fritz, K.S.Wood, D.Van Vechten, A.L.Gyulamiryan, A.S.Kuzanyan, et al. Proceedings of SPIE Meeting: X-Ray and Gamma-Ray Instrumentation for Astronomy XI, San Diego, August 2000. SPIE, 4140, 459 (2000).
- 8. Г.Р.Бадалян, С.И.Петросян, С.Р.Арутюнян, В.О.Вартанян, А.С.Кузанян. Изв. НАН Армении, Физика, 38, 409 (2003).
- 9. P.M.Chaikin, J.F.Kwak. Rev. Sci. Instrum., 40, 104 (1975).
- 10. A.V.Cold, D.K.C.MacDonald, et al. Phil. Mag., 5, 765 (1960).

ELECTRON-BEAM DEPOSITION OF LANTHANUM-CERIUM HEXABORIDE THIN FILMS. INVESTIGATION OF RESISTIVITY AND SEEBECK COEFFICIENT

S.R. HARUTYUNYAN, V.O. VARDANYAN, G.R. BADALYAN, S.I. PETROSYAN, V.R. NIKOGHOSYAN, V.T. TATOYAN, A.S. KUZANYAN, A.M. GULYAN

Thin films of lanthanum hexaboride with cerium impurity, the promising thermoelectric material for low-temperature applications, are deposited on various substrates by electron-beam evaporation. The resistivity and Seebeck coefficient are investigated in the temperature range of 3K+300K. The features appropriate to Kondo effect in the dependences $\rho(i)$ and S(T) are detected at temperatures below 20 K. It is revealed that the nature of the temperature dependence of the Seebeck coefficient, parameters of metallicity and Kondo-scattering of investigated films are conditioned by the material of the substrate and temperature of deposition.