Известия НАН Армении, Физика, т.38, №1, с.3-11 (2003)

УДК 539.1

АНОМАЛЬНАЯ ПРОНИЦАЕМОСТЬ БЛОХОВСКИХ СОСТОЯНИЙ ВБЛИЗИ ВЕРШИН ПЕРИОДИЧЕСКОГО ПОТЕНЦИАЛА

А.Ж. МУРАДЯН, Г.А. МУРАДЯН

Ереванский государственный университет

(Поступила в редакцию 26 апреля 2002 г.)

Рассмотрены стационарные (блоховские) состояния частицы в поле периодического потенциала бипараболической формы. Получено, что с уменьшением энергии в пределах одной энергетической зоны волновая функция частицы в подбарьерной части периодического потенциала не уменьшается, как следовало бы ожидать исходя из однобарьерных закономерностей, а, наоборот, растет. Это "аномальное" поведение есть прямое следствие суперпозиции вероятностных волн, отраженных от и проходящих через периодически повторяющиеся потенциальные барьеры.

1. Введение

Блоховские функции составляют основу теории периодических систем, в частности, физики кристаллических твердых тел [1] и оптических кристаллов [2]. С целью высокоточной аппроксимации потенциала периодической стоячей волны (синусоидального потенциала) одним из авторов была предложена бипараболическая форма [3], блоховские функции которой выражаются через вырожденные гипергеометрические функции. Такое приближение для потенциала было использовано при вычислении скорости спонтанного излучения в поле стоячей волны в работе [4], где показано наличие пространственной анизотропии в излучении, а также для вычисления критической температуры Бозе-Эйнштейновской конденсации идеального газа в периодическом поле в [5], где выявлено понижение этой температуры с углублением потенциала.

В настоящей работе бипараболический периодический потенциал используется для исследования самих блоховских функций – более конкретно, для анализа закономерностей поведения волновых функций подбарьерных состояний при измененией энергии частицы в близлежащих к потенциальным вершинам энергетических зонах. В случае единичного потенциального барьера или при переходе из одной зоны в другую в случае периодического потенциала эта закономерность общеиз-

3

вестна: подбарьерные волновые функции уменьшаются с уменьшением энергии частицы. Нами же рассматриваются и сопоставляются изменения волновых функций внутри одной и той же энергетической зоны. Как ни странно, этот вопрос выпал из поля зрения исследователей; во всяком случае, в доступной нам научной литературе нам не удалось найти работ, касающихся данной проблемы. Аргументом для исследования этого вопроса является для нас то, что блоховские состояния образуются за счет интерференции проходящих и отраженных де бройлевских волн частицы от многих (в пределе - бесконечного числа) потенциальных барьеров и, следовательно, в установлении закономерностей, помимо энергии, существенную роль играет также интерференция. Следует отметить, что отражение и интерференция подбарьерных волн имеют место и в случае одного потенциального барьера, однако амплитуды волн при этом сильно отличаются, эффективность интерференции мала и доминирующей является энергетическая закономерность. В случае же периодического потенциала, когда имеют место многократные наложения волн от разных барьеров, доминирующей, особенно в пределах олной и той же зоны, может оказаться интерференционная закономерность, и если она не совпадает с энергетической, то тогда и общая закономерность будет отличаться от известной (энергетической). Наши расчеты показывают, что действительно, при уменьшении энергии частицы в пределах определенной зоны волновая функция (вероятность нахожления) в подбарьерной области не уменьшается, как следовало бы ожилать исходя из энергетических соображений, а наоборот, растет. При этом как и предполагалось, темп роста наибольший для зон, близлежащих к вершинам периодического потенциала.

Бипараболический потенциал и приближение околовершинных блоховских состояний

Стационарное уравнение Шредингера исследуемой задачи можно записать в стандартной форме

$$\left[\frac{d^2}{dz^2} + E - V(z)\right]\psi(z) = 0, \qquad (1)$$

где координата частицы \bar{z} нормирована на период потенциала L с коэффициентом 2π ($z = 2\pi \bar{z}/L = k\bar{z}$, k есть постоянная обратной одномерной решетки), а полная энергия E и потенциальная энергия V(z)нормированы на квант энергии отдачи решетки $E_r = \hbar^2 k^2 / 2M$, где M – масса частицы. Выбирая для удобства нулевую энергию на уровне минимумов потенциальной энергии, бипараболический потенциал можно записать в виде (см. более подробно [5] или [3])

$$V(z) = \frac{1+(-1)^{m}}{2} V - (-1)^{m} \chi (z - m\pi)^{2}, \qquad (2)$$

где V(z) – высота периодического потенциала, $\chi = 2V / \pi^2$, $m = 0, \pm 1, \pm 2, ...,$ а z для определенного m лежит в пределах $(m-1/2)\pi \le z \le (m+1/2)\pi$. Вид потенциала показан на рис.1, где область I (и подобные ей) будем в дальнейшем называть ямоподобной, а область II (и подобные ей) – барьероподобной.

Рис.1. Вид бипараболического потенциала с указанием ямоподобной (I) и барьероподобной (II) областей.

Линейно-независимые решения уравнения (1) (блоховские состояния) в ямоподобной области I записываются в виде [3,5]

$$\varphi_1(z) = \exp(-\sqrt{\chi} z_1^2 / 2) \Phi(\alpha, 1/2; \sqrt{\chi} z_1^2), \qquad (3)$$

$$p_2(z) = z_1 \exp(-\sqrt{\chi} z_1^2 / 2) \Phi(\alpha + 1/2, 3/2; \sqrt{\chi} z_1^2),$$
(4)

где $z_1 = z - \pi$, $\pi/2 \le z \le 3\pi/2$, $\Phi(.,.;.)$ – вырожденная гипергеометрическая функция,

$$\alpha = \frac{1}{4} \left(1 - \frac{E}{\sqrt{\chi}} \right). \tag{5}$$

Полная волновая функция при этом будет

$$\psi_1(z) = c_1 \varphi_1(z) + c_2 \varphi_2(z) , \qquad (6)$$

где c₁ и c₂ – неизвестные пока постоянные коэффициенты.

Аналогичные решения в барьероподобной области II имеют вид

$$\overline{\varphi}_{1}(z) = \exp(i\sqrt{\chi}z_{2}^{2}/2) \Phi(\beta, 1/2; -i\sqrt{\chi}z_{2}^{2}), \qquad (7)$$

$$\overline{\varphi}_{2}(z) = z_{2} \exp(i\sqrt{\chi} z_{2}^{2}/2) \mathcal{P}(\beta + 1/2, 3/2; -i\sqrt{\chi} z_{2}^{2}), \qquad (8)$$

где $z_2 = z - 2\pi$, $3\pi/2 \le z \le 5\pi/2$,

$$\beta = \frac{1}{4} \left(1 - i \frac{E - V}{\sqrt{\chi}} \right), \tag{9}$$

а полная волновая функция в этой области

$$\psi_{II}(z) = \overline{c}_1 \overline{\varphi}_1(z) + \overline{c}_2 \overline{\varphi}_2(z), \qquad (10)$$

с произвольными пока коэффициентами \overline{c}_1 и \overline{c}_2 .

С помощью условий непрерывности (в граничных точках $z = 3\pi/2$ и $5\pi/2$)) и блоховской периодичности волновой функции получаем дисперсионное соотношение, которое можно написать в виде

$$\cos(2\pi P) = 1 + 2G_{11}(E)G_{22}(E), \qquad (11a)$$

или

$$\cos(2\pi P) = -1 + 2G_{12}(E)G_{21}(E),$$
 (11b)

где $P = p/2\hbar k$ есть нормированный квазиимпульс частицы, а

$$G_{ij}(E) = \{\varphi_i(z)\overline{\varphi}_j'(z) + \varphi_i'(z)\overline{\varphi}_j(z)\}_{z=\pi/2}, \quad i,j = 1,2.$$
(12)

Те же условия, дополненные условием нормировки

$$\int_{\pi/2}^{3\pi/2} ||\psi_{I}(z)|^{2} dz + \int_{3\pi/2}^{5\pi/2} ||\psi_{II}(z)|^{2} dz = 1, \qquad (13)$$

определяют и все коэффициенты $c_{1,2}$ и $\overline{c}_{1,2}$.

Граничные значения энергетических зон, согласно (11а) и (11б), определяются как решения трансцендентных уравнений

 $G_{ii}(E) = 0$. (14)

Анализ этих условий показывает, что лево- и правосторонние граничные точки зон на положительной оси квазиимпульсов (расширенное представление зон) определяются условиями $G_{11}(E) = 0$ и $G_{12}(E) = 0$ для четных номеров зон (для сохранения аналогии с гармоническим потенциалом зона с наименьшей энергией обозначена n=0) и условиями $G_{22}(E) = 0$ и $G_{21}(E) = 0$ для нечетных номеров зон.

Для зон с четными номерами целесообразно остальные коэффициенты выразить через c₁:

$$c_2 = \frac{G_{11}(E)}{G_{21}(E)} \frac{\exp(i2\pi P) + 1}{\exp(i2\pi P) - 1} c_1, \qquad (15)$$

$$\overline{c}_1 = \frac{\exp(i2\pi P) + 1}{2G_{21}(E)}c_1, \qquad \overline{c}_2 = \frac{\exp(i2\pi P) - 1}{2G_{22}(E)}c_1, \tag{16}$$

а c₁ определить из условия нормировки. Для зон же с нечетными номерами целесообразно выразить коэффициенты через c₂,

$$c_1 = \frac{G_{21}(E)}{G_{11}(E)} \frac{\exp(i2\pi P) - 1}{\exp(i2\pi P) + 1} c_2, \qquad (17)$$

$$\overline{c}_1 = \frac{\exp(i2\pi P) - 1}{2G_{11}(E)}c_2, \qquad \overline{c}_2 = \frac{\exp(i2\pi P) + 1}{2G_{12}(E)}c_2, \qquad (18)$$

а условие нормировки применить для определения c_2 :

Рассмотрим теперь состояния, энергия которых находится вблизи вершин периодического потенциала: $E \approx V$. На рис.1 они лежат внутри пунктирных линий. Для таких значений энергий параметр β (см. (9)), определяющий характер блоховских волновых функций в барьероподобных областях, принимает значение $\beta = 1/4$. Тогда соответствующие формулы (7),(8) упрощаются с помощью известного представления бесселевских функций $J_{\nu}(x)$ через вырожденные гипергеометрические:

$$J_{\nu}(x) = \frac{1}{\Gamma(\nu+1)} \left(\frac{x}{2}\right) \exp(-ix) \Phi(\frac{1}{2} + \nu, 1 + 2\nu, 2ix), \qquad (19)$$

где $\Gamma(v+1)$ есть гамма-функция. При использовании этой формулы для функций (7) следует выбрать v = -1/4, а для функций (8) v = 1/4. После соответствующих замен получаем

$$\overline{\varphi}_{1}(z) = \Gamma(3/4)(\sqrt{\chi}z^{2}/4)^{1/4}J_{-1/4}(\sqrt{\chi}z^{2}/2), \qquad (20)$$

$$\overline{\varphi}_{2}(z) = \Gamma(5/4)(\sqrt{\chi}z^{2}/4)^{-1/4}J_{1/4}(\sqrt{\chi}z^{2}/2).$$
(21)

Во избежание недоразумений отметим, что хотя линейно-независимые решения $\overline{\varphi}_1(z)$ и $\overline{\varphi}_2(z)$ в рассматриваемом приближении не зависят от энергии частицы, полная блоховская волновая функция $\psi_{II}(z)$ все же зависит от энергии через коэффициенты \overline{c}_1 и \overline{c}_2 .

Что касается волновых функций $\varphi_1(z)$ и $\varphi_2(z)$ в ямоподобной области, то для упрощения их вида мы пользуемся вторым разложением Трикоми [6]

$$\exp(-x/2)\Phi(a,\sigma+1;x) = \Gamma(\sigma+1)(\chi x)^{-\sigma/2} \sum_{n=0}^{\infty} A_n(\chi,\frac{\sigma+1}{2}) \left(\frac{x}{4\chi}\right)^{n/2} J_{\sigma+n}(2\sqrt{x\chi}), (22)$$

где $\chi = (1 + \sigma)/2 - a$, $A_0(\chi, \lambda) = 1$, $A_1(\chi, \lambda) = 0$, ..., и ограничиваемся первым членом, соответствующим достаточно глубоким потенциалам ($\chi > 1$). Бесселевые функции при этом выражаются через элементарные триго-

нометрические функции и мы получаем

$$\varphi_1(z) = \cos(\sqrt{E}z), \qquad \varphi_2(z) = \frac{1}{\sqrt{E}}\sin(\sqrt{E}z).$$
 (23)

Существенные упрощения претерпевают также выражения коэффициентов $c_{1,2}$ и $\overline{c}_{1,2}$, а дисперсионное соотношение ((11a) или (11b)) записывается в виде

$$\cos(2\pi P) = \frac{\pi/4}{\sin(\pi/4)} \left\{ 2u \left[J_{-1/4}(u) J_{-3/4}(u) - J_{1/4}(u) J_{3/4}(u) \right] \cos(\pi\sqrt{E}) - J_{-1/4}(u) J_{1/4}(u) \frac{\pi}{2} \sqrt{E} \sin(\pi\sqrt{E}) - J_{-1/4}(u) J_{3/4}(u) \frac{\pi}{2} \sqrt{E} \sin(\pi\sqrt{E}) - J_{-1/4}(u) J_{3/4}(u) \frac{\pi}{2} \sqrt{E} \sin(\pi\sqrt{E}) \right\}, (24)$$

где $u = \sqrt{\chi \pi^2} / 8.$

3. Результаты численных расчетов

Для выявления искомой зависимости, то есть поведения блоховской волновой функции при изменении энергии в пределах одной определенной зоны, мы исходили, во-первых, из вышеприведенного близвершинного приближения. С помощью компьютерных численных расчетов мы предварительно определили глубину потенциала V таким образом, чтобы последняя внутрипотенциальная разрешенная зона находилась непосредственно вблизи вершин периодического потенциала (рис.2а, например, соответствует значение V = 1.4494). Далее с помощью формул (6) и (10) для блоховских функций (включающих явные выражения (23) и (7), (8) для линейно независимых решений, выражения (15), (16) или (17), (18) для коэффициентов c12 и c12, дисперсионное соотношение (24) и нормировочное условие (13)) вычислили искомые значения квадрата модуля блоховских функций $|\psi_1|^2$ и $|\psi_1|^2$ в зависимости от координаты z вдоль одного пространственного периода. Повторяя цикл этих расчетов для разных энергий из рассматриваемой зоны, получили последовательность графиков, сопоставление которых и показывает искомую закономерность.

В действительности мы такие расчеты проводили неоднократно, меняя глубину потенциала V (но каждый раз выбирая его таким, чтобы, как уже указывалось выше, последняя внутрипотенциальная зона находилась вблизи потенциальных вершин). Часть результатов показана на рис.2а и 2b. Для рис.2а внутри периодического потенциала имеются две зоны, одна из которых находится глубже в потенциале и для которой развитое выше околовершинное приближение не применимо. Трехмерный график соответствует как раз второй, околовершинной зоне. Ле-

вая половина передней оси (z) соответствует ямоподобной области потенциала, а правая половина – барьероподобной. Значения энергии растут при удалении от переднего фронта рисунка к заднему фронту. Наибольшее значение энергии зоны соответствует одновременно и высоте потенциала. Как хорошо видно из правой половины рисунка (барьероподобная область) при углублении внутрь потенциала (при движении от заднего фронта к переднему фронту) квадрат модуля волновой функции не уменьшается, а наоборот, растет. Это означает, что вероятность нахождения частицы глубже под потенциальным барьером (оставаясь, правда, в пределах одной зоны) больше, чем вероятность при меньших глубинах! Такое поведение прямо противоположно широко известной закономерности поведения вероятности при переходах из более высоко лежащих зон к менее высоко лежащим или поведения стационарных состояний в случае одного изолированного барьера. Кстати, чтобы лишний раз убедиться в этих известных закономерностях, мы рассчитали блоховские функции с помощью наших точных решений бипараболичского потенциала, а также стационарные волновые функции для одного потенциального барьера бипараболической формы. Внутризонного, названного нами аномальным, характера поведения нет ни при межзонных переходах по энергиям, ни при монотонном уменьшении энергии в случае однобарьерного потенциала.

Рис.2. Распределение блоховских состояний на плоскости энергия (E) – координата (z) для околовершинной зоны при двух разных глубинах периодического потенциала: V=1.4494 (а) и 18.65 (b). Число внутрипотенциальных зон при этом равно двум и четырем соответственно.

Следующий вопрос, который представляет интерес, заключается в том, как скорость аномального роста блоховской волновой функции в барьероподобной области зависит от местоположения зоны внутри или вне периодического потенциала. Для таких расчетов приближение околовершинных энергий, естественно, не применимо и нам пришлось исходить из точных формул. Подробный анализ этой закономерности и сопоставление с однобарьерным случаем мы приведем в другой публикации. Отметим только, что с удалением от околовершинной области как внутрь, так и вне периодического потенциала скорость (по шкале энергий) аномального роста уменьшается.

Рис.3. Распределение, аналогичное рис.2, для прямоугольного периодического потенциала (Крониг-Пенни); *V* = 1.668.

Отметим, наконец, что вопрос аномального поведения для подбарьерных волновых функций мы получили также в случае Крониг-Пенниевского потенциала. Однако оно выражается намного слабее, чем в случае бипараболического потенциала (см. рис.3). Это понять легко, поскольку найденное аномальное поведение обусловлено много (бесконечно) кратной суперпозицией проходящих и отраженных вероятностных волн. При бипараболической форме потенциала толщина барьеров в верхней части уменьшается, амплитуды волн в подбарьерных областях становятся больше, а интерференция (причина аномалии) – соответственно эффективнее, чем для Крониг-Пенниевского потенциала прямоугольной формы.

Работа выполнена в рамках гранта ISTC A-215-99.

ЛИТЕРАТУРА

- Н.Ашкрофт, Н.Мермин. Физика твердого тела, т.1, М., Мир, 1979; Дж.Займан. Принципы теории твердого тела. М., Мир, 1974.
- K.Berg-Sorensen, Y.Castin, K.Molmer, J.Dalibard. Europhys. Lett., 22, 663 (1993);
 G.Grynberg, C.Triche. Proc. Int. School of Phys. "Enrico Fermi". Course CXXXI, Ed. by A.Aspect, W.Barrieta, R.Bonifacio, IOS Press, Amsterdam, 1996, p.243;
 G.Raithel, W.D.Phillips, S.L.Rolston. Phys. Rev. Lett., 81, 3615 (1998); M.Horne, I.Jex, A.Zeillinger. Phys. Rev. A, 59, 2190 (1999).
- 3. А.Ж. Мурадян. ФТТ, 41, 1317 (1999).
- 4. A.Zh.Muradyan. Optics and Spectroscopy, 89, 376 (2000).
- 5. А.Ж. Мурадян. Изв. НАН Армении, Физика, 35, 3 (2000).
- H.Bateman, A.Erdelyi. Higher Transcendental Functions. v.1. New York, London, 1963.

ԲԼՈԽՅԱՆ ՎԻճԱԿՆԵՐԻ ԱՆՈՄԱԼ ԹԱՓԱՆՑԵԼԻՈՒԹՅՈՒՆ ՊԱՐԲԵՐԱԿԱՆ ՊՈՏԵՆՑԻԱԼԻ ԳԱԳԱԹՆԵՐԻ ՄՈՏ

Ա.Ժ. ՄՈՒՐԱԴՅԱՆ, Գ.Ա. ՄՈՒՐԱԴՅԱՆ

Քննարկված են մասնիկի ստացիոնար (բլոխյան) վիճակները պարբերական պոտենցիալի գագաթներին մոտ էներգիաների դեպքում։ Յույց է տրված, որ նույն էներգիական գոտում էներգիայի նվազմանը զուգընթաց պոտենցիալային արգելքների տակ ընկած ալիքային ֆունկցիան աճում է, ինչը ճիշտ հակառակն է գոտուց գոտի անցման համար լայնորեն հայտնի օրինաչափությանը։

ANOMALOUS TRANSPARENCY OF NEAR-TOP BLOCH STATES OF PERIODIC POTENTIAL

A.ZH. MURADYAN, G.A. MURADYAN

It is shown that the Bloch states exhibit anomalous, counterintuitive behavior of transparency for energies laying in definite, near-top bands of the periodic potential: the decreasing of energies there is accompanied by the increasing of the wave function in barrier-type regions of the potential.