УДК 621.315

ПРИМЕСНЫЕ СОСТОЯНИЯ В ЦИЛИНДРИЧЕСКОЙ КВАНТОВОЙ ТОЧКЕ СО СЛАБО СПЛЮСНУТЫМ (ВЫТЯНУТЫМ) ЭЛЛИПТИЧЕСКИМ СЕЧЕНИЕМ

К.Г. ДВОЯН, Э.М. КАЗАРЯН

Ереванский государственный университет

(Поступила в редакцию 25 января 2001 г.)

Вариационным методом в рамках теории возмущений исследованы примесные состояния и энергия связи электрона в цилиндрической квантовой точке со слабо сплюснутым (вытянутым) эллиптическим сечением. Полученные результаты сравнены со случаем цилиндра с круговым сечением. В случае микрокристалла из GaAs исследованы зависимости энергии основного состояния и энергии связи от его линейных размеров и от коэффициента эллиптичности.

1. Введение

Современный прогресс нанотехнологий дает возможность выращивания новых типов полупроводниковых гетероструктур, чьи размеры (несколько нанометров) соизмеримы с длиной де Бройлевской волны носителей заряда в них. Вследствие этого размерное квантование стало заметным образом влиять на движение электронов и дырок в одном (квантовая пленка, сверхрешетка), в двух (квантовая проволока) и в трех (квантовая точка) направлениях. В последние годы заметно возрос интерес к нульмерным (0D) полупроводниковым наноструктурам [1]. Это обстоятельство в основном связано с нелинейными оптическими свойствами таких объектов, а также реализацией высокоэффективных лазеров на квантовых точках. Еще недавно такие структуры выращивались в коллоидных растворах или в стеклянных диэлектрических матрицах. Однако развитие полупроводниковых технологий, таких, как молекулярно-лучевая эпитаксия или литографическая техника, сделало реальным выращивание квантовых точек в GaAsAl1-xAs или в схожих структурах [2]. В настоящее время хорошо исследованы свойства сферических микрокристаллов (см., напр., [3]). Вместе с тем, в последние годы, основываясь на методе роста Странски-Крастанова, появилось много работ, посвященных пирамидальным и цилиндрическим микрокристаллам [4,5]. Вследствие этого важное значение приобрел вопрос правильной аппроксимации ограничивающего потенциала квантовой точки. Отметим к примеру, что именно верная аппроксимация ограничивающего потенциала определенного класса квантовых ям сделала возможным теоретическое обобщение теоремы Кона в них [6].

С другой стороны, немаловажную роль играет и внешняя форма микрокристалла, которая тоже влияет на физические характеристики носителей заряда. В работах [5,7] исследованы свойства цилиндрических микрокристаллов с круговым сечением. Эффект влияния эллиптичности сечения на одноэлектронные состояния рассмотрен в работе [8]. В работе [9] показано, что слабая эллипсоидальная деформация сферического микрокристалла ощутимым образом влияет и на примесные состояния. Поэтому представляется актуальной задача исследования примесных состояний в цилиндрической квантовой точке со слабо сплюснутым (вытянутым) эллиптическим сечением. Решению этой задачи и посвящена данная работа.

2. Теория

Рассмотрим цилиндрический микрокристалл со слабо сплюснутым (вытянутым) эллиптическим сечением. Считаем, что эллипс сечения получается из круга путем малой деформации без изменения площади сечения, что в свою очередь означает сохранение объема микрокристалла (см. рис.1). Тогда потенциальная энергия U(X,Y,Z) запишется в виде

$$U(X,Y,Z) = \begin{cases} 0, & \frac{X^2}{a^2} + \frac{Y^2}{b^2} < 1, \quad |z| < L, \\ \infty, & \frac{X^2}{a^2} + \frac{Y^2}{b^2} \ge 1, \quad |z| \ge L, \end{cases}$$
(1)

где *а* и *b*, соответственно, малая и большая полуоси эллипса сечения, 2*L* – высота цилиндра. Отметим, что примесь расположена в геометрическом центре квантовой ямы.

Рис.1. Деформация кругового цилиндра в эллиптический.

Гамильтониан задачи имеет вид

$$\hat{H} = \frac{\hat{\mathbf{p}}^2}{2\mu} - \frac{e^2}{\chi\sqrt{\chi^2 + \gamma^2 + Z^2}} + U , \qquad (2)$$

где \hat{P} – оператор импульса частицы, μ и e – соответственно, эффективная масса и заряд электрона, χ – диэлектрическая проницаемость полупроводника и окружающей среды (в частности, для GaAs χ = 12,5).

После замены переменных

$$X = \frac{ax}{R_0}; Y = \frac{by}{R_0}; Z = z,$$
 (3)

получим цилиндр с круговым сечением радиуса R₀. Введя параметр эллиптичности

$$\beta = \frac{b-a}{b} \left(\left| \beta \right| << 1 \right), \tag{4}$$

можем написать

$$a \approx R_0 \left(1 + c_1 \beta + c_3 \beta^2 \right), \quad b \approx R_0 \left(1 + c_2 \beta + c_4 \beta^2 \right), \quad R_0 = (ab)^{1/2}, \tag{5}$$

где коэффициенты, удовлетворяющие вышеупомянутым условиям, принимают следующие значения: $c_1 = -1/2$, $c_2 = 1/2$, $c_3 = -1/8$, $c_4 = 3/8$. После такого преобразования гамильтониан системы можно записать как

$$\hat{H} = \hat{H}_0 + \hat{H}_1 + \hat{V}_1 + \hat{V}_2 \tag{6}$$

где

$$\hat{H}_0 = -\frac{\hbar^2}{2\mu} \nabla^2 + U , \qquad (7)$$

$$\hat{H}_1 = -\frac{\alpha}{\sqrt{x^2 + y^2 + z^2}},$$
(8)

$$\hat{V}_1 = -\beta \left[\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} \right) + \frac{\alpha}{2} \cdot \frac{x^2 - y^2}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}} \right], \tag{9}$$

$$\hat{V}_{2} = -\beta^{2} \left[\frac{\hbar^{2}}{2\mu} \frac{\partial^{2}}{\partial x^{2}} + \frac{3\alpha^{2}}{8} \cdot \frac{\left(x^{2} - y^{2}\right)^{2}}{\left(x^{2} + y^{2} + z^{2}\right)^{5/2}} - \frac{\alpha}{2} \cdot \frac{y^{2}}{\left(x^{2} + y^{2} + z^{2}\right)^{3/2}} \right].$$
(10)

и введено обозначение $\alpha = e^2 / \chi$. Отметим, что \hat{H}_0 и \hat{H}_1 имеют одинаковый вклад в общий гамильтониан, а \hat{V}_1 и \hat{V}_2 в силу условия $|\beta| << 1$ можно рассматривать как малые возмущения. В качестве первого шага решим уравнение Шредингера в цилиндрических координатах

$$\hat{H}_0 \Psi_0 = E_0 \Psi_0, \tag{11}$$

которое в безразмерных величинах запишется в виде

$$-\left[\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2}\right]\Psi_0 = \varepsilon_0\Psi_0, \qquad (12)$$

Здесь введены обозначения $\varepsilon_0 = E_0/E_R$, $r = \rho/a_B$, $z = Z/a_B$, где $E_R = \hbar^2/2\mu a_B^2$ – эффективная ридберговская энергия, a_B – эффективный боровский радиус (для GaAs $E_R = 5.275$ meV, $a_B = 104$ Å). Исходя из результатов работы [7], волновую функцию запишем в виде

$$\Psi_0 = N_0 e^{im\varphi} \cos(kz) J_m(\eta r) , \qquad (13)$$

где N_0 – нормировочный коэффициент, $J_m(\eta r)$ – функция Бесселя *m*ого порядка и $\eta^2 = \varepsilon_0^2 - k^2$, $k = \pi/2L'$ – волновой вектор в направлении z, a $L' = L/a_R$.

Энергетические уровни выражаются через нули $\alpha_{n,m}$ функции Бесселя,

$$\varepsilon_0 = \frac{\alpha_{n,m}^2}{R_0^{\prime 2}} + \frac{\pi^2}{4L^{\prime 2}}, \qquad (14)$$

где $n = 1, 2...; m = 0, \pm 1, \pm 2..., R'_0 = R_0/a_B$.

Далее, следуя вариационному методу, решим уравнение

$$\left(\hat{H}_{0}+\hat{H}_{1}\right)\Psi_{1}=\varepsilon_{imp}^{circle}\Psi_{1}, \qquad (15)$$

где $\varepsilon_{imp}^{circle}$ – энергия примесного электрона в цилиндре с круговым сечением. Решение этого уравнения для основного состояния ($n = 1, m = 0, n_1 = 1$) представим в виде

$$\Psi_1^{(0)} = N_1 J_0 \left(\frac{\alpha_{1,0}}{a_B} r \right) \cos\left(\frac{\pi z}{2L'} \right) \exp\left(-\lambda \sqrt{r^2 + z^2} \right), \tag{16}$$

где λ – вариационный параметр, а N₁ – нормировочный коэффициент, определяемый как

$$N_1^{-2} = 2\pi a_B^3 A, \tag{17}$$

где

$$A = \int_{0}^{R_0} \int_{-L'}^{L'} J_0^2 \left(\frac{\alpha_{1,0}}{a_B} r \right) \exp\left(-2\lambda\sqrt{r^2 + z^2} \right) \cos^2\left(\frac{\pi z}{2L'} \right) r dr dz .$$
(18)

После некоторых преобразований для энергии получим

$$\varepsilon_{imp}^{circle} = \langle \Psi_1^{(0)} | \hat{H}_0 + \hat{H}_1 | \Psi_1^{(0)} \rangle = \varepsilon_0 - \lambda^2 + \frac{B_1 + B_2 + B_3}{A} , \qquad (19)$$

где введены обозначения

$$B_{1} = (2\lambda - 2) \int_{0}^{R_{0}'} \int_{-L'}^{L'} J_{0}^{2} \left(\frac{\alpha_{1,0}}{a_{B}}r\right) \exp\left(-2\lambda\sqrt{r^{2} + z^{2}}\right) \cos^{2}\left(\frac{\pi z}{2L'}\right) \frac{rdrdz}{\sqrt{r^{2} + z^{2}}}, \quad (20)$$

$$B_{2} = -2\lambda \frac{\alpha_{1,0}}{a_{B}} \int_{0}^{R'_{0}} \int_{-L'}^{L'} J_{0} \left(\frac{\alpha_{1,0}}{a_{B}}r\right) J_{1} \left(\frac{\alpha_{1,0}}{a_{B}}r\right) \exp\left(-2\lambda\sqrt{r^{2}+z^{2}}\right) \cos^{2}\left(\frac{\pi z}{2L'}\right) \frac{r^{2}drdz}{\sqrt{r^{2}+z^{2}}}, \quad (21)$$

$$B_{3} = -2\lambda \frac{\pi}{2L'} \int_{0}^{R'_{0}L'} J_{0}^{2} \left(\frac{\alpha_{1,0}}{a_{B}}r\right) \exp\left(-2\lambda\sqrt{r^{2}+z^{2}}\right) \cos\left(\frac{\pi z}{2L'}\right) \sin\left(\frac{\pi z}{2L'}\right) \frac{rdrzdz}{\sqrt{r^{2}+z^{2}}}.$$
(22)

Следуя первому порядку теории возмущений, введем величину

$$\Delta \varepsilon = \varepsilon_{imp}^{el} - \varepsilon_{imp}^{circle} = \langle \Psi_1^{(0)} | \hat{V}_1 + \hat{V}_2 | \Psi_1^{(0)} \rangle, \qquad (23)$$

где ε_{imp}^{el} – энергия примесного электрона в эллиптическом цилиндре. Нетрудно убедиться, что

$$<\Psi_1^{(0)} |\hat{V}_1| \Psi_1^{(0)} > \equiv 0.$$
 (24)

Аналогичным образом, вычисляя вклад от \hat{V}_1 во втором порядке теории возмущений, также получим нулевой результат:

$$\varepsilon_{imp_{n}}^{el^{(2)}} = \sum_{k} \frac{\left| \hat{V}_{l_{kn}} \right|^{2}}{\varepsilon_{imp_{n}}^{el^{(0)}} - \varepsilon_{imp_{k}}^{el^{(0)}}} \equiv 0.$$
(25)

Этого и следовало ожидать, т.к. физический результат не должен зависеть от того, в каком направлении вытянут эллипсоид, т.е. от знака β . Чтобы найти ненулевой вклад от поправки в энергию основного состояния, вычислим вклад от \hat{V}_2 , который пропорционален β^2 . После некоторых вычислений окончательно для энергии получим

$$\varepsilon_{imp}^{el} = \varepsilon_{imp}^{circle} + \langle \Psi_1^{(0)} | \hat{V}_2 | \Psi_1^{(0)} \rangle =$$

$$= \varepsilon_{imp}^{circle} + \beta^2 \left(\frac{\alpha_{1,0}^2}{2R'^2} + \frac{D_1 + D_2 + D_3 + D_4 + D_5 + D_6}{A} \right), \qquad (26)$$

где через D₁ (i = 1,..6) обозначены следующие интегральные величины ;

$$D_{1} = \int_{0}^{R_{0}} \int_{-L'}^{L'} J_{0}^{2} \left(\frac{\alpha_{1,0}}{a_{B}}r\right) \exp\left(-2\lambda\sqrt{r^{2}+z^{2}}\right) \cos^{2}\left(\frac{\pi z}{2L'}\right) \frac{rdrdz}{\sqrt{r^{2}+z^{2}}},$$
 (27)

$$D_{2} = \frac{\lambda^{2}}{2} \int_{0}^{R_{2}'} \int_{-L'}^{L'} J_{0}^{2} \left(\frac{\alpha_{1,0}}{a_{B}}r\right) \exp\left(-2\lambda\sqrt{r^{2}+z^{2}}\right) \cos^{2}\left(\frac{\pi z}{2L'}\right) \frac{rdrz^{2}dz}{r^{2}+z^{2}}, \quad (28)$$

$$D_{3} = \left(\frac{1}{2}-\frac{\lambda}{2}\right) \int_{0}^{R_{2}'} \int_{0}^{L'} J_{0}^{2} \left(\frac{\alpha_{1,0}}{a_{B}}r\right) \exp\left(-2\lambda\sqrt{r^{2}+z^{2}}\right) \cos^{2}\left(\frac{\pi z}{2L'}\right) \frac{r^{3}drdz}{\left(r^{2}+z^{2}\right)^{3/2}}, \quad (29)$$

$$D_{4} = \frac{\pi\lambda}{2L'} \int_{0}^{R_{2}'} \int_{0}^{L'} J_{0}^{2} \left(\frac{\alpha_{1,0}}{a_{B}}r\right) \exp\left(-2\lambda\sqrt{r^{2}+z^{2}}\right) \cos\left(\frac{\pi z}{2L'}\right) \sin\left(\frac{\pi z}{2L'}\right) \frac{rdrzdz}{\sqrt{r^{2}+z^{2}}}, \quad (30)$$

$$D_{5} = -\frac{3}{8} \int_{0}^{R_{2}'} \int_{-L'}^{L'} J_{0}^{2} \left(\frac{\alpha_{1,0}}{a_{B}}r\right) \exp\left(-2\lambda\sqrt{r^{2}+z^{2}}\right) \cos^{2}\left(\frac{\pi z}{2L'}\right) \frac{r^{5}drdz}{\left(r^{2}+z^{2}\right)^{5/2}}, \quad (31)$$

$$D_{6} = -\frac{3}{8} \int_{0}^{R_{2}'} \int_{-L'}^{L'} J_{0}^{2} \left(\frac{\alpha_{1,0}}{a_{B}}r\right) \exp\left(-2\lambda\sqrt{r^{2}+z^{2}}\right) \cos^{2}\left(\frac{\pi z}{2L'}\right) \frac{r^{5}drdz}{\left(r^{2}+z^{2}\right)^{5/2}}. \quad (32)$$

Энергия связи определяется как разность энергий без примеси и с примесью. Пользуясь результатами, полученными в работе [8], для нее получим

$$\varepsilon_{bind}^{el} = \frac{\alpha_{1,0}^2}{R_0^{\prime 2}} + \frac{\pi^2}{4L^2} + \beta^2 \frac{\alpha_{1,0}^2}{2R_0^{\prime 2}} - \varepsilon_{imp}^{el} \,. \tag{33}$$

3. Обсуждение

Как видно из полученных результатов, наличие примесного центра в линейном по В приближении не дает вклада в энергию основного состояния. Как было показано в работе [8], при отсутствии примесного центра ситуация была аналогичной. Наличие примеси добавляет в гамильтониане кулоновский потенциал, который в силу своего притягательного характера лишь уменьшает влияние эллиптичности сечения. Иными словами, наложение центрально-симметричного поля в радиальном направлении заставляет частицу меньше ощущать эллиптичность стенок. Что касается вклада самих стенок, то, как показано в работе [8], вклад от деформации в первом порядке по В нулевой. Это объясняется тем, что деформация кругового сечения приводит к сжатию в одном геометрическом направлении и вытягиванию в другом. Вследствие сжатия уровень энергии повышается ровно настолько, насколько понижается при вытягивании в перпендикулярном направлении. Вклады от этих преобразований компенсируют друг друга, и в итоге энергия в первом приближении остается без изменений. Что касается кулоновского потенциала, то он в этом случае ничего не меняет. Картина становится иной, когда учитываются квадратичные по β члены в разложении (5), вклад от которых в энергию основного состояния уже не нулевой.

Рис.2. Зависимость энергии основного состояния примесного электрона в эллиптической и круговой цилиндрических квантовых точках от приведенного радиуса. 1. L = 100 Å, 2. L = 200 Å.

На рис.2 приведены зависимости энергии примесного электрона в эллиптической и круговой цилиндрических квантовых точках от приведенного радиуса при различных значениях его высоты. Как видно из рисунка, эллиптичность проявляется при малых значениях радиуса. С увеличением радиуса энергия уменьшается, и кривые кругового и эллиптического случаев сливаются. Это объясняется тем, что при малых радиусах размерное квантование в радиальном направлении подавляет кулоновское и перпендикулярное размерное квантования. При больших радиусах энергия частицы в радиальном направлении в основном обусловлена кулоновским квантованием и роль эллиптичности становится незначительной. Для больших значений высоты кривые энергии смещены вниз, что является следствием уменьшения размерного квантования по вертикали.

На рис.3 приведены кривые энергии основного состояния примесного электрона в эллиптической и круговой цилиндрических квантовых точках от высоты цилиндра при различных значениях приведенного радиуса. Как видно из рисунка (кривая 2), эллиптичность сечения проявляется ярче при больших значениях высоты. С уменьшением высоты микрокристалла размерное квантование по вертикали становится значительнее, вследствие чего эллиптичность проявляется слабее и кривые сливаются. Ситуация аналогична и для меньших значений радиуса (кривая 1), но кривые смещены вверх благодаря увеличению вклада размерного квантования в радиальном направлении. Следует отметить также, что при меньших значениях радиуса эллиптическая поправка заметнее. Так например при R = 100 Å поправка составляет $\Delta E \approx 0.15 E_R$, а при R = 150 Å она составляет уже $\Delta E \approx 0.07 E_R$.

Рис.3. Зависимость энергии основного состояния примесного электрона в эллиптической и круговой цилиндрических квантовых точках от высоты цилиндра.1. *R* = 100 Å, 2. *R* = 150 Å.

Рис.4. Зависимость энергии связи цилиндрического микрокристалла с эллиптическим сечением от приведенного радиуса. 1. L = 50 Å, 2. L = 100 Å, 3. L = 150 Å, 4. L = 200 Å

На рис.4 приведены зависимости энергии связи примесного электрона в цилиндрическом микрокристалле с эллиптическим сечением от приведенного радиуса при различных значениях его высоты. Как и следовало ожидать, энергия связи с ростом L уменьшается. Для больших значений радиуса кривые смещены вниз. В частности отметим, что разница энергий связи для различных L с увеличением высоты уменьшается

Сравнивая полученные результаты с результатами работы [8], отметим, что при наличии примесного центра эллиптическая поправка меняется незначительно.

Данная работа выполнена в рамках программы INTAS (грант №99-00928).

ЛИТЕРАТУРА

- 1. P.Harrison. Quantum Wells, Wires and Dots: Theoretical and Computational Physics. University of Leeds, Leeds, United Kingdom, 1999.
- 2. Self-Assembled InGaAs-GaAs Quantum Dots. Academic Press, New York, 1999.
- E.M.Kazaryan, L.S.Petrosyan, H.A.Sarkisyan. Physica E, 8, 19 (2000).
 M.Grundmann, O.Stier, and D.Bimberg. Phys. Rev. B, 52, 11969 (1995).
- 5. S. Le Goff and B.Stebe. Phys. Rev. B, 47, 1383 (1992).
- 6. P.Maksym and, T.Chakraborty. Phys. Rev. Lett., 65, 108 (1990).
- 7. S.V.Branis, G.Li, and K.K.Bajaj. Phys. Rev. B, 47, 1316 (1992).
- 8. К.Г.Двоян. Известия НАН Армении, Физика, 35, 242 (2000).

9. А.С.Гаспарян, Э.М.Казарян. Известия НАН Армении, Физика, 32, 130 (1997).

ԽԱՌՆՈՒՐԴԱՅԻՆ ՎԻՃԱԿՆԵՐԸ ԹՈՒՅԼ ՍԵՂՄՎԱԾ (ՉԳՎԱԾ) ԷԼԻՊՍԱՅԻՆ ՀԱՏՈւՅԹՈՎ ԳԼԱՆԱՅԻՆ ՔՎԱՆՏԱՅԻՆ ԿԵՏՈՒՄ

Կ.Գ. ԴՎՈՅԱՆ, Է.Մ. ՂԱՋԱՐՅԱՆ

Վարիացիոն մեթողով, խոտորումների տեսության շրջանակներում ուսումնասիրված են խառնուրդային վիճակները և կապի էներգիան թույլ սեղմված (ձգված) էլիպսային հատույթով գլանային քվանտային կետում։ Ստացված արդյունքները համեմատված են շրջանային հատույթով գլանի դեպքի հետ։ GaAs քվանտային կետի համար ուսումնասիրված են հիմնական վիճակի և կապի էներգիայի կախվածությունները քվանտային կետի գծային չափերից և էլիպսայնության գործակցից։

IMPURITY STATES IN A CYLINDRICAL QUANTUM DOT WITH A WEAKLY FLATTENED (ELONGATED) ELLIPTICAL CROSS-SECTION

K.G. DVOYAN, E.M. KAZARYAN

Within the framework of perturbation theory, the variational method is used to determine impurity states and binding energy of an electron in a cylindrical quantum dot with a weakly flattened (elongated) elliptical cross-section. Obtained results are compared with the case of a circular cylinder. For a GaAs quantum dot the ground state and binding energy dependences on the dot's linear length and coefficient of ellipticity are studied.