УДК 629.7

ФИЗИЧЕСКИЕ ПРОЦЕССЫ В СОЛНЕЧНЫХ ЭЛЕМЕНТАХ С ВНУТРЕННИМ ТЯНУЩИМ ПОЛЕМ

Ф.В. ГАСПАРЯН, В.М. АРУТЮНЯН, В.В. БУНИАТЯН

Ереванский государственный университет

(Поступила в редакцию 16 марта 2001 г.)

Рассмотрено влияние неравномерного (экспоненциального) распределения концентрации легирующих акцепторных примесей на ток короткого замыкания и напряжение холостого хода солнечного элемента на основе *p-n* перехода. Показано, что при этом создается дополнительное внутреннее тянущее поле, которое всегда способствует увеличению тока короткого замыкания, а при определенных условиях — росту напряжения холостого хода.

1. Введение

Проблема увеличения коэффициента полезного действия (кпд) солнечных элементов (СЭ) на основе обычных р-п переходов интенсивно обсуждается уже много лет. Предлагаются новые материалы, различные конструкционные и технологические подходы и решения, новые физические принципы с целью повышения тока короткого замыкания, напряжения холостого хода, в целом фактора заполнения и кпд (см., например, [1-8]). Дальнейшее увеличение значения фактора заполнения (наибольшие значения которого уже достигают ~0,85) весьма затруднено. Значения напряжения холостого хода, определяемые контактной разностью потенциалов, ограничены выбором полупроводника и его удельным сопротивлением. В предлагаемых в [2,3,9] освещаемых с обеих сторон СЭ с р-і-п структурой рост тока короткого замыкания может быть значителен. Напряжение холостого хода в согласии с общими термодинамическими принципами изменяется очень слабо. Для увеличения тока замыкания p-n переход обычно располагается посредственно у поверхности (на глубине ~0,3-0,5 мкм) с целью уменьшения рекомбинационных потерь неосновных носителей тока, созданных солнечным излучением. Тонкий приповерхностный освещаемый слой создать довольно сложно (см., например, [10]), хотя это приводит к подавлению поверхностной рекомбинации, продвижению спектральной характеристики в сторону более коротких волн и увеличению кпд.

В настоящей работе предлагается создать в приповерхностном сравнительно "толстом" слое СЭ (с толщиной в несколько мкм) внутреннее тянущее поле с целью уменьшения рекомбинационных потерь фотогенерированных неосновных носителей тока. Для этого предлагается создать градиент концентрации легирующей акцепторной примеси в p-области p-n перехода. Созданное благодаря этому градиенту внутреннее тянущее поле ускорит движение фотогенерированных носителей и уменьшит время их пролета через приповерхностный слой, тем самым уменьшая рекомбинационные потери [1-9].

2. Анализ процессов в структуре

На рис.1 представлены структура (a), распределение легирующих примесей (б), внутреннее поле p-n перехода E_0 и тянущее поле E_{∇} (в) в СЭ на основе p-n перехода. Здесь представлена также система координат, используемая в расчетах. Начало координат находится на границе технологического p-n перехода. На рис.1 l_p и l_n — длины p- и n- областей; x_s и x_r — координаты для p- и n-областей, соответственно; $N_A(x)$ и N_D — концентрации легирующих примесей.

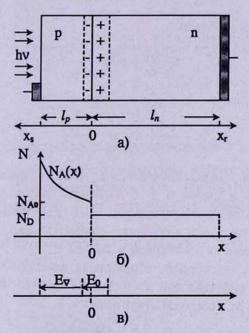


Рис.1. Структура (а), распределение легирующих примесей (б), внутреннее и тянущее поля (в) в *p-n* переходе.

Расчет плотности тока короткого замыкания j_{SC} и напряжения холостого хода U_{OC} выполняется по известной методике (см., например, [1-3]).

Предположим, что концентрация легирующих акцепторов изменяется по закону

$$N_A(x) = N_{A0} \exp(-\xi x)$$
, (1)

где ξ — некоторый параметр, определяющий темп изменения $N_A(x)$, N_{A0} — концентрация акцепторов в плоскости перехода (x=0).

Внутреннее тянущее поле E_{∇} в *p*-области в случае полностью ионизированных примесей определим следующим образом:

$$E_{\nabla} = \frac{kT}{e} \frac{1}{N_A(x)} \frac{dN_A(x)}{dx}.$$
 (2)

Из (1) и (2) имеем

$$E_{\nabla} = -\xi \frac{kT}{e},\tag{3}$$

где k — постоянная Больцмана, T — абсолютная температура. По направлению поле E_{∇} совпадает с полем E_0 и способствует улучшению коэффициента собирания фотогенерированных носителей тока.

Уравнения непрерывности для неосновных носителей имеют следующий вид: для электронов в *p*-области

$$-\frac{1}{e}\frac{\partial j_n}{\partial x} = g(x) - \frac{n - n_p}{\tau_n} , \qquad (4)$$

для дырок в п-области

$$\frac{1}{e}\frac{\partial j_p}{\partial x} = g(x) - \frac{p - p_n}{\tau_p} . \tag{5}$$

В (4) и (5) n и p — неравновесные, а n_p и p_n — равновесные концентрации электронов и дырок в p— и n—областях перехода, соответственно; g(x) — скорость световой генерации; j_n и j_p — плотности токов неосновных носителей в p— и n—областях, соответственно; τ_n и τ_p — времена жизни неравновесных электронов и дырок.

Пусть g_0 — скорость образования электронно-дырочных пар в плоскости p-n перехода при x=0. Тогда скорость образования пар в n-области (справа от перехода) будет равна

$$g(x_r) = g_0 \exp(-\alpha x_r). \tag{6}$$

Слева от перехода (в р-области) будем иметь

$$g(x_s) = g_0 \exp(\alpha x_s). \tag{7}$$

В (6) и (7) α – коэффициент собственного поглощения полупроводника. Тогда на поверхности p-области, на которую падает излучение,

$$g_s = g_0 \exp(\alpha l_p). \tag{8}$$

При квантовом выходе, равном единице,

$$g_s = \alpha I_0, \tag{9}$$

где І0 - интенсивность падающего излучения.

Отметим, что в p-области неосновные носители тока движутся как за счет диффузии, так и тянущего поля E_{∇} . В n-области дырки движутся только за счет диффузии. Соответственно, плотности токов неосновных носителей в p- и n-областях будут определяться выражениями

$$j_n = en\mu_n E_{\nabla} + eD_n \frac{\partial n}{\partial x}; \qquad j_p = -eD_p \frac{\partial p}{\partial x}. \tag{10}$$

Здесь μ_n – подвижность электронов, D_n и D_p – коэффициенты диффузии электронов и дырок.

Для определения концентраций неравновесных носителей тока в p- и n-областях p – n перехода получим следующие дифференциальные уравнения:

$$\frac{d^{2}(n-n_{p})}{dx^{2}} - \xi \frac{d(n-n_{p})}{dx} - \frac{n-n_{p}}{L_{n}^{2}} + \frac{g(x)}{D_{n}} = 0,$$
 (11)

$$\frac{d^2(p-p_n)}{dx^2} - \frac{p-p_n}{L_p^2} + \frac{g(x)}{D_p} = 0.$$
 (12)

Здесь L_n и L_p – диффузионные длины электронов и дырок.

Отметим, что в отличие от известных уравнений (см., например, [1-3]), уравнения (11) и (12) отличаются тем, что в (11) появляется новый член, пропорциональный ξ и связанный с дрейфом электронов в p-области.

Для решения уравнений (11) и (12) нами использованы следующие граничные условия:

для уравнения (11)

$$p = p_n \exp\left(\frac{eU}{kT}\right), \quad x_r = 0; \quad \frac{\partial p}{\partial x} = 0, \quad x_r = l_n;$$
 (13)

для уравнения (12)

$$n = n_p \exp\left(\frac{eU}{kT}\right), \quad x_s = 0; \quad \frac{\partial n}{\partial x} = 0, \quad x_s = l_p.$$
 (14)

С учетом условий (13) и (14) решения уравнений (11) и (12), соот-

ветственно, будут иметь следующий вид:

$$p(x_r) = p_n + \left[p_n \left(e^{\epsilon U/kT} - 1 \right) + \frac{g_0 \tau_p}{\left(\alpha L_p \right)^2 - 1} \right] \frac{\text{ch} \left[\left(l_n - x_r \right) / L_p \right]}{\text{ch} \left(l_n / L_p \right)} - \frac{g_0 \tau_p}{\left(\alpha L_p \right)^2 - 1} \left[\exp(-\alpha x_r) + \alpha L_p \exp(-\alpha L_n) \frac{\text{sh} \left(x_r / L_p \right)}{\text{ch} \left(l_n / L_p \right)} \right], \quad (15)$$

$$n(x_S) = n_p + \left[n_p \left(e^{\epsilon U/kT} - 1 \right) + \frac{g_0 \tau_n}{\left(\alpha L_n \right)^2 - \xi \alpha L_n^2 - 1} \right] \times \frac{2\text{ch} \left[\left(l_p - x_s \right) / L_{n,\nabla} \right] - \xi L_{n,\nabla} \text{sh} \left[\left(l_p - x_s \right) / L_{n,\nabla} \right]}{2 \exp(-\xi x_S / 2) \text{ch} \left(l_p / L_n \right)} - \frac{g_0 \tau_n}{2\text{ch} \left(l_p / L_n \right)} \left[\exp(\alpha x_s) - \frac{2\alpha L_{n,\nabla} \exp[\alpha l_p - \xi \left(l_p - x_s \right) / 2 \right] \text{sh} \left(x_s / L_{n,\nabla} \right)}{2\text{ch} \left(l_n / L_{n,\nabla} \right) + \xi L_{n,\nabla} \text{sh} \left(l_p / L_{n,\nabla} \right)} \right]. \quad (16)$$

Подставляя значения p и n в уравнения (10), получим для плотности тока через плоскость технологического перехода следующее выражение:

$$j = j_n(x_s = 0) + j_p(x_r = 0) = j_\nabla + eg_0(L_1 + L_2) + (eg_n L'_n - eg_p L'_p + j_\nabla)(e^{eU/kT} - 1), (17)$$

где

$$\begin{split} j_{\nabla} &= \xi k T \mu_n n_p \, ; \quad g_n = \frac{n_p}{\tau_n} \, ; \quad g_p = \frac{p_n}{\tau_p} \, ; \\ L'_n &= \frac{L_n^2}{L_{n,\nabla}} \frac{\left(\xi \; L_{n,\nabla}/2\right)^2 - 1}{\text{cth} \left(l_p / L_{n,\nabla}\right) - \xi \; L_{n,\nabla}/2} \, ; \quad L'_p = L_p \, \text{th} \left(\frac{l_n}{L_p}\right) \, ; \quad L_{n,\nabla} = L_n \sqrt{1 + \left(\frac{\xi L_n}{2}\right)^2} \, ; \\ L_1 &= \frac{L_n}{\left(\alpha L_n\right)^2 + \xi \alpha L_n^2 - 1} \\ \frac{\alpha L_n \; \exp\left[\left(\alpha + \xi / 2\right) l_p\right] + \frac{L_n}{L_{n,\nabla}} \left[\left(\frac{\xi \; L_{n,\nabla}}{2}\right)^2 - 1\right] \text{sh} \left(\frac{l_p}{L_{n,\nabla}}\right)}{\text{ch} \left(l_p / L_{n,\nabla}\right) - \frac{\xi \; L_{n,\nabla}}{2} \, \text{sh} \left(\frac{l_p}{L_{n,\nabla}}\right)} - \alpha \; L_n} \, \right] \, ; \\ L_2 &= \frac{L_p}{\left(\alpha L_p\right)^2 - 1} \left[\frac{\alpha L_p \; \exp(-\alpha l_n)}{\text{ch} \left(l_n / L_p\right)} - \alpha L_p + \text{th} \left(\frac{l_n}{L_p}\right)\right] \, . \end{split}$$

Приняв в (17) j=0, определим выражение для напряжения холостого хода U_{OC} , а при U=0 из (17) получим выражение для плотности тока короткого замыкания j_{SC} :

$$U_{OC} = \frac{kT}{e} \ln \left[1 + \frac{eg_0(L_1 + L_2) + j_{\nabla}}{eg_p L'_p - eg_n L'_n - j_{\nabla}} \right], \tag{18}$$

$$j_{SC} = eg_0(L_1 + L_2) + j_{\nabla}. \tag{19}$$

При условии $j_{\nabla} = 0$, т.е. при $\xi = 0$ (отсутствие градиента концентрации легирующих акцепторных примесей) выражения (18) и (19) переходят в известные для обычного p-n перехода выражения [1,2].

Наличие внутреннего тянущего поля E_{∇} в p-области, как и ожидалось, способствует образованию соответствующего тока j_{∇} , что увеличивает значение j_{SC} . При этом одновременно может уменьшаться U_{OC} (хотя и слабее).

Рост тока короткого замыкания составляет

$$\gamma = 1 + \frac{j_{\nabla}}{eg_0(L_1 + L_2)}$$

раза, а напряжение холостого хода изменяется в

$$\beta = \ln \left[1 + \frac{eg_0(L_1 + L_2) + j_{\nabla}}{eg_p L'_p - eg_n L'_n - j_{\nabla}} \right] / \ln \left[1 + \frac{eg_0(L_1 + L_2)}{eg_p L'_p - eg_n L'_n} \right]$$

раз.

3. Обсуждение

Обсуждение полученных результатов проведем на примере кремниевых p-n переходов. На рис.2-4 представлены зависимости $\gamma(\xi)$, $\beta(\xi)$ и произведения $\beta(\xi)\gamma(\xi)$. Графики на рис.2-4 построены для случая однократного Солнца при следующих параметрах кремния: $\alpha=500\,\mathrm{cm}^{-1}$, $D_n=35\,\mathrm{cm}^2/\mathrm{c}$, $D_p=13,1\,\mathrm{cm}^2/\mathrm{c}$, $\mu_n=1350\,\mathrm{cm}^2/\mathrm{B}\cdot\mathrm{c}$, $\mu_p=480\,\mathrm{cm}^2/\mathrm{B}\cdot\mathrm{c}$, $l_n=5\cdot10^{-3}\mathrm{cm}$, $l_p=5\cdot10^{-4}\mathrm{cm}$. Расчеты проведены при комнатной температуре, интенсивности падающего излучения $I_0=W/hv=5,1085\cdot10^{17}$ фотон/см²с (при W=0,1 Вт/см², hv=1,2 эВ). Кривые на рис.2-4 построены для разных времен жизни электронов и дырок: кр. $1-\tau_n=\tau_p=10^{-6}\,\mathrm{c}$, кр. $2-\tau_n=\tau_p=10^{-5}\,\mathrm{c}$, кр. $3-\tau_n=\tau_p=10^{-4}\,\mathrm{c}$.

Анализ кривых рис.2-4 показывает:

1. Как и ожидалось, ток короткого замыкания растет при наличии тянущего поля. Параметр γ растет с ростом ξ , принимает максимальное значение при $l_p \xi \approx 1$ и насыщается после $\xi \geq 10^4$ см⁻¹. С ростом удельного сопротивления ρ кремния γ изменяется слабо, незначительно уменьшаясь при $\rho \geq 10$ Ом-см. Максимальное значение $\gamma_{\text{max}} \approx 1,72$, т.е. ток короткого замыкания при наличии внутреннего тянущего поля увеличивается почти на 72%. С ростом длины диффузии неосновных носителей тока (или τ_n и τ_p) γ уменьшается.

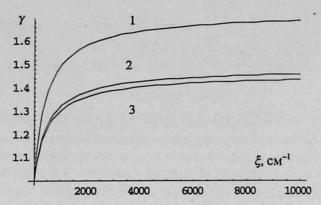


Рис.2. Зависимость параметра γ от ξ при удельном сопротивлении $\rho=1$ Ом · см.

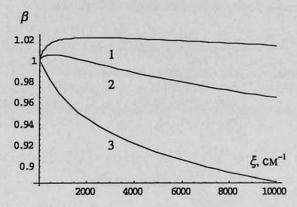


Рис.3. Зависимость параметра β от ξ при удельном сопротивлении $\rho=1$ Ом-см.

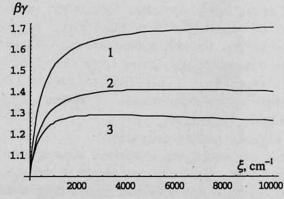


Рис.4. Зависимость произведения $\beta \gamma$ от ξ при удельном сопротивлении $\rho = 1$ Ом-см.

2. Параметр β в основном есть убывающая функция от ξ , хотя при сравнительно малых временах жизни неосновных носителей β

имеет максимум, который усиливается при $\rho=1$ Ом·см. Отметим, что при $\rho=1$ Ом·см и $\tau_n=\tau_p=10^{-6}\,\mathrm{c}$ в области значений $0<\xi\leq 10^4\,\mathrm{cm}^{-1}$ параметр β всегда больше единицы, а $\beta_{\mathrm{max}}=1,02$ при $\xi\approx 1500\,\mathrm{cm}^{-1}$. Ожидалось, что наличие тянущих полей должно уменьшить U_{OC} , т.е. β [1]. Однако, при определенных областях значений ρ и ξ возможно получение положительного эффекта, т.е. значения $\beta>1$.

3. Произведение $\beta \gamma$ ведет себя в основном аналогично зависимости $\gamma(\xi)$. Значения произведения $\beta \gamma$ всегда больше единицы и при определенных параметрах полупроводника $\beta \gamma$ может достичь значения 1,72. Таким образом, с помощью создания внутреннего тянущего поля можно существенно увеличить кпд солнечнего элемента (при выбранных нами параметрах полупроводника почти на 72%). Произведение $\beta \gamma$ имеет наилучшие значения при $\rho = 1$ Ом-см.

Некоторое уменьшение γ и β с ростом L_n и L_p можно объснить следующим образом. При отсутствии градиента $N_A(x)$ с ростом L_n и L_p , естественно, увеличивается ток короткого замыкания. При наличии градиента $N_A(x)$, созданное им тянущее поле как бы компенсирует роль влияния L_n и L_p на j_{SC} . При этом, как видно также из рис.2-4, при слабых градиентах ($\xi \le 100 \, \text{cm}^{-1}$) различие между кривыми 1, 2 и 3 составляет всего ~4-5%, тогда как при сильных градиентах "подавление" положительной роли роста L_n и L_p тянущим полем все более усиливается и доходит до ~15% (при $\xi \ge 10^4 \, \text{cm}^{-1}$).

Данная работа выполнена в рамках гранта МНТЦ А-322.

ЛИТЕРАТУРА

- A.L. Fahrenbruch, R.H. Bube. Fundamentals of solar cells. New York, Acad. Press, 1983.
- M.D.Archer, J.R.Bolton, S.T.C.Siklos. Solar Energy Materials and Solar Cells, 40, 133 (1996).
- Ф.В.Гаспарян. В сб. Полупроводниковая микроэлектроника. Ереван, изд. ЕГУ, 1999, с.139.
- 4. W.Wettling. Solar Energy Materials and Solar Cells, 38, 487 (1995).
- A.V.Shah, R.Platz, H.Keppner. Solar Energy Materials and Solar Cells, 38, 501 (1995).
- A.G.Aberle et al. J. Appl. Phys., 77, 3491 (1995).
- В.М.Андреев. ФТП, 33, 1035 (1999).
- 8. H. Wagner. Phys. Stat. Solidi (b), 192, 229 (1995).
- F.V.Gasparyan, V.M.Aroutiounian. Solar Energy Materials and Solar Cells (2001) (в печати).
- 10. V.M.Aroutiounian, G.K.Berberian. Sensors and Actuators, A32, 450 (1992).

Ֆ.Վ. ԳԱՍՊԱՐՅԱՆ, Վ.Մ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Վ.Վ. ԲՈՒՆԻԱԹՅԱՆ

Քննարկված է p-n անցման լուսավորվող p-տիրույթում ակցեպտորային խառնուրդների էքսպոնենցիալ բաշխման ազդեցությունը p-n անցման հիման վրա պատրաստված արեգակնային էլեմենտի կարճ միացման հոսանքի և պարապ ընթացքի լարման վրա։ Ցույց է տրված, որ այդպիսի բաշխումը հանգեցնում է ոչ հիմնական լիցքակիրներին ձգող ներքին դաշտի առաջացման և արեգակնային էլեմենտի օգտակար գործողության գործակցի աճի։

PHYSICAL PROCESSES IN SOLAR CELLS WITH INTERNAL DRAVING FIELD

F.V. GASPARYAN, V.M. AROUTIOUNIAN, V.V. BUNIATYAN

The short circuit current, open circuit voltage and efficiency of a solar cell on the base of p-n junction at the exponential distribution of the acceptor impurity concentration in the p-region are discussed. It is shown that in the p-region the draving field for the minority carriers is formed and the values of the short circuit current and efficiency for the silicon solar cell are increased up to 72%.