УДК 621.315

ЭЛЕКТРОННЫЕ СОСТОЯНИЯ В СИЛЬНО ВЫТЯНУТОМ ЭЛЛИПСОИДАЛЬНОМ МИКРОКРИСТАЛЛЕ ПРИ НАЛИЧИИ МАГНИТНОГО ПОЛЯ

к.г. двоян

Ереванский государственный университет

(Поступила в редакцию 11 ноября 1999 г.)

В адиабатическом приближении исследованы энергетические состояния электрона в сильно вытянутом эллипсоидальном микрокристалле при наличии однородного магнитного поля, направленного вдоль оси вращения эллипсоида.

1. Теория

Современные технологии допускают возможность выращивания полупроводниковых микрокристаллов (квантовых точек) различных форм и размеров [1,2]. Как известно, в подобных полупроводниковых структурах важную роль играет геометрия задачи, которая сильно влияет на энергетический спектр носителей заряда.

В настоящей работе исследованы уровни энергии электрона в сильно вытянутом полупроводниковом эллипсоиде вращения при наличии однородного магнитного поля.

Рассмотрим непроницаемый, сильно вытянутый эллипсоидальный микрокристалл. Тогда потенциальную энергию электрона U(x, y, z) можно представить в следующем виде:

$$U = \begin{cases} 0, \frac{x^2 + y^2}{a^2} + \frac{z^2}{c^2} < 1, \\ \infty, \frac{x^2 + y^2}{a^2} + \frac{z^2}{c^2} \ge 1, \end{cases}$$
 (1)

где c >> a, a и c – полуоси эллипсоида. Направление внешнего магнитного поля совпадает с осью z, а калибровка векторного потенциала выбрана в виде $A = \frac{1}{2}[H \times r]$. Решим задачу в адиабатическом приближении. Отметим, что при движении электрона в подобном микрокристалле важное значение, как параметр задачи, имеет магнитная длина

 $a_H = \sqrt{\hbar / \mu \omega_H}$, где $\omega_H = eH / \mu s$ — циклотронная частота. Представим гамильтониан в виде суммы "быстрой" \hat{H}_1 и "медленной" \hat{H}_2 частей, $\hat{H} = \hat{H}_1 + \hat{H}_2 + U$, где соответственно

$$\hat{H}_1 = -\frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2} \right] - \frac{i\hbar\omega_H}{2} \frac{\partial}{\partial \varphi} + \frac{\mu\omega_H^2 r^2}{8}, \ \hat{H}_2 = -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial z^2}. \ (2)$$

1. $a_H >> a$

В этом случае в \hat{H}_1 можно пренебречь последним членом (в силу слабости магнитного поля). После чего, при фиксированном z для быстрой подсистемы имеем уравнение Шредингера

$$\hat{H}_1 \Psi = E(z) \Psi \,. \tag{3}$$

Представляя волновую функцию в виде $\Psi = e^{im\phi}R(r)$, получим уравнение для радиальной части:

$$R'' + \frac{1}{r}R' + \left(K^2 - \frac{m^2}{r^2}\right)R = 0, \qquad (4)$$

где $K=\sqrt{\frac{2\mu}{\hbar^2}}\Big(E-\frac{\hbar\omega_H m}{2}\Big)$. Решением (4) является функция Бесселя m-ого порядка $R(r)=NJ_m(Kr)$. При фиксированном z движение локализовано в двумерной яме радиуса $a(z)=a\sqrt{1-\frac{z^2}{c^2}}$, следовательно, из граничного условия $J_m[Ka(z)]=0$ для E(z) получим:

$$E(z) = \frac{\hbar^2 \alpha_{n+1,m}^2}{2\mu \alpha^2(z)} + \frac{\hbar \omega_H m}{2}, \quad n, m = 0, 1...,$$
 (5)

где $\alpha_{n+1,m}$ – корни функции Бесселя. Разлагая E(z) в ряд при малых z, напишем

$$E(z) \approx \frac{\hbar^2 \alpha_{n+1,m}^2}{2\mu a^2} + \frac{\hbar \omega_H m}{2} + \frac{\hbar^2 \alpha_{n+1,m}^2}{2\mu a^2 c^2} z^2.$$
 (6)

Далее, следуя технике адиабатического приближения, для "медленной" подсистемы мы приходим к одномерному уравнению Шредингера с эффективной потенциальной энергией (6):

$$\left\{-\frac{\hbar^2}{2\mu}\frac{\partial^2}{\partial z^2} + E(z)\right\}\Phi = E\Phi. \tag{7}$$

Отсюда окончательно для энергии получим следующее выражение:

$$E = \frac{\hbar^2 \alpha_{n+1,m}^2}{2\mu a^2} + \frac{\hbar \omega_H m}{2} + \frac{\hbar^2 \alpha_{n+1,m}}{\mu ac} \left(N + \frac{1}{2} \right), \quad n, m = 0, 1 \dots; N = 1, 2 \dots$$
 (8)

2. aH ~ a

Последний член в \hat{H}_1 в этом случае уже нельзя отбросить и при фиксированном z для "быстрой" системы получаем уравнение

$$\left\{ -\frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2} \right] - \frac{i\hbar\omega_H}{2} \frac{\partial}{\partial \varphi} + \frac{\mu\omega_H^2 r^2}{8} \right\} \Psi = E(z)\Psi. \tag{9}$$

После замены переменной $\xi = \frac{\mu \omega_H}{2\hbar} r^2 = \frac{r^2}{2a_H^2}$ и подстановки

 $R(\xi) = e^{-\xi/2} \xi^{|m|/2} \Omega(\xi)$ для радиальной части получим

$$\xi \Omega''(\xi) + (|m|+1-\xi)\Omega'(\xi) + \left(\beta - \frac{|m|+1}{2}\right)\Omega(\xi) = 0, \qquad (10)$$

где $\beta = \frac{1}{\hbar \omega_H} \left[E(z) - \frac{\hbar \omega_H m}{2} \right]$. Решение (10) выражается через

гипергеометрические функции $\Omega(\xi) = F\left[-\left(\beta - \frac{|m|+1}{2}\right), |m|+1, \xi\right]$, а энергия определяется из граничного условия.

$$F\left[-\left(\beta - \frac{|m|+1}{2}\right), |m|+1, \frac{r^2}{2a_H^2}\right]_{a(Z)} = 0.$$
 (11)

Для основного состояния m=0 можно численно получить приближенное решение $\beta-\frac{1}{2}\approx n_1+\frac{n_2}{\xi|_{a(x)}}$, где n_1 и n_2 – некоторые константы. Тог-

да при малых z для энергии получаем выражение

$$E(z) \approx \hbar \omega_H \left(n_1 + \frac{1}{2} \right) + \frac{2\hbar^2 n_2}{\mu a^2} + \frac{4\hbar^2 n_2}{\mu a^2 c^2} z^2.$$
 (12)

Решая уравнение (7) с данным эффективным потенциалом E(z), для энергетического спектра получаем

$$E = \hbar \omega_H \left(n_1 + \frac{1}{2} \right) + \frac{2\hbar^2 n_2}{\mu a^2} + \frac{2\hbar^2 \sqrt{n_2}}{\mu ac} \left(N + \frac{1}{2} \right), \quad N = 1, 2...$$
 (13)

3. $a_H \ll a$

В этом случае нахождение спектра аналогично предыдущему случаю, лишь с той разницей, что в граничном условии (11) заменяем a на a_H . Тогда

$$E = \hbar \omega_H \left(n_3 + 2n_4 + \frac{1}{2} \right) + \frac{2\hbar}{c} \sqrt{\frac{\hbar \omega_H}{\mu}} \left(N + \frac{1}{2} \right), \quad N = 1, 2... , \quad (14)$$

где n₃ и n₄ - некоторые числовые константы.

2. Обсуждение

Как видно из полученных результатов, при слабых полях $(a_H >> a)$ наложение магнитного поля приводит к снятию вырождения, однако дискретность энергии в основном остается обусловленной пространственным квантованием. В частности, в этом предельном случае для основного состояния приходим к известному результату [3]. При более сильных полях $(a_H \sim a)$, учитывая конкуренцию пространственного и магнитного квантований, энергия с большой точностью аппроксимируется. В частности, для GaAs при $H=10^5$ Э константы имеют следующие значения: $n_1=0.01$, $n_2=1.904$. При очень сильных полях $(a_H << a)$ частица в радиальном направлении локализована в пределах области с радиусом a_H , а энергия частицы в основном обусловлена магнитным квантованием.

ЛИТЕРАТУРА

- 1. Self-Assembled InGaAs-GaAs Quantum Dots. New York, Academic Press, 1999.
- 2. А.С.Гаспарян, Э.М.Казарян. Известия НАН Армении, Физика, 32, 70 (1998).
- В.М.Галицкий, Б.М.Карнаков, В.И.Коган. Задачи по квантовой механике. М., Наука, 1992.

ՆՎԵՍՐՎՈՍԹՎԼԷ ՇՍԵՐ ՀՍՎԱ ԳՂԳԵՍԻՆ ՆՎԵՍՆԻՐԻՎԱՄ ՆՎԵՍԻՆԻՄԱՄ ԱՎՈՏՅԱՐ ԱՎՈՏՅԱՐ ԱԿՈՒՅՈՒՐԵՎՈՒՄ

4.4. 24N3UV

Ադիաբատ մոտավորությամբ ուսումնասիրված են էլեկտրոնի էներգիական մակարդակները խիստ ձգված էլիպսոիդային միկրոբյուրեղում էլիպսոիդի պտտման առանցքով ուղղված մագիսական դաշտում։

ELECTRON STATES IN A STRONGLY ELONGATED ELLIPSOIDAL MICROCRYSTAL IN THE PRESENCE OF MAGNETIC FIELD

K.G. DVOYAN

In the adiabatic approximation the electron energy states are studied for a strongly elongated microcrystal in the presence of a uniform magnetic field directed along the rotational axis of the ellipsoid.