УДК 535.2

РАСПРЕДЕЛЕНИЕ ИНТЕНСИВНОСТИ В НЕДИФРАГИРУЮЩИХ ПУЧКАХ, РАСПРОСТРАНЯЮЩИХСЯ В НЕЛИНЕЙНОЙ СРЕДЕ

Д.Л. ОГАНЕСЯН

Ереванский НИИ оптико-физических измерений

(Поступила в редакцию 11 ноября 1999 г.)

Приводятся результаты теоретического исследования распределения интенсивности в недифрагирующих пучках, распространяющихся в нелинейной среде, в приосевом приближении.

Под недифрагирующими пучками, распространяющимися в нелинейной среде, понимают волновые поля, распределение интенсивности в которых остается постоянным во всех плоскостях, перпендикулярных выделенному направлению, называемому осью пучка. Как известно, при мощности пучка, равной критической, в нелинейной среде может наступить волноводное распространение, когда плоский фазовый фронт и профиль интенсивности пучка не меняются с расстоянием [1-3].

В данной работе приведены результаты аналитического решения уравнения, описывающего распространение недифрагирующих волновых пучков в среде с нелинейным изменением диэлектрической проницаемости, без учета линейной дифракционной расходимости в приосевом приближении. В параксиальном приближении получена зависимость ширины недифрагирующего пучка от интенсивности. Приводятся также результаты численного интегрирования.

Рассмотрим распространение волнового пучка в среде, диэлектрическая проницаемость которой зависит от интенсивности волны следующим образом:

$$\varepsilon = \varepsilon_0 + \varepsilon_2 \cdot \left| E \right|^2,\tag{1}$$

где ε_2 – линейная диэлектрическая проницаемость, $\varepsilon_2 \cdot |E|^2$ – нелинейная добавка, зависящая от интенсивности поля [1].

Нетрудно показать, что уравнение, описывающее распространение пучка в такой среде в случае, когда распределение интенсивности пучка не зависит от направления распространения (ось z), в цилиндрической системе координат примет следующий вид:

$$\xi \cdot \frac{d^2 E}{d\xi^2} + \frac{dE}{d\xi} + \pi^2 \cdot \varepsilon_0 \cdot E + \pi^2 \cdot \varepsilon_2 \cdot |E|^2 \cdot E = 0, \qquad (2)$$

где $\xi = (x^2 + y^2) / \lambda_0^2$, λ_0 – длина волны непрерывного излучения, x + y – поперечные координаты пучка. В приосевом приближении ($\xi < 1$) интенсивность пучка представим в виде

$$\left|E\right|^{2} = E_{0}^{2} \cdot \left(1 - \frac{\lambda_{0}^{2}}{\sigma^{2}} \cdot \xi\right)$$
(3)

где σ - характерная ширина пучка в плоскости z = 0, E_0^2 – максимальное значение интенсивности при $\xi = 0$.

С учетом (3) уравнение (2) можно представить в виде

$$\frac{d^2 E}{d\rho^2} + \frac{1}{\rho} \cdot \frac{dE}{d\rho} + \left(\frac{1}{\rho} \left[\frac{k+1}{k+2} \right] - \frac{1}{4} \right) \cdot E = 0, \qquad (4)$$

где $\rho = (2 \cdot \pi \cdot \lambda_0 \cdot E_0 \cdot (\varepsilon_2)^{1/2} / \sigma) \cdot \xi$, $k = 1/2 \cdot [\pi \cdot \sigma \cdot (\varepsilon_0 + \varepsilon_2 \cdot E_0^2) / (\lambda_0 \cdot E_0 \cdot (\varepsilon_2)^{1/2}) - 1].$

Как показано в [2], решение уравнения (4), удовлетворяющее условиям конечности, имеет следующий вид:

$$E(\xi) = \omega(\rho) \cdot \exp\left(-\frac{\rho}{2}\right) = \omega\left(\frac{\xi}{n}\right) \cdot \exp\left(-\frac{\xi}{2 \cdot n}\right),\tag{5}$$

где $n = \sigma/(2 \cdot \pi \cdot \lambda_0 \cdot E_0 \cdot (\varepsilon_2)^{1/2})$, $\omega(\xi/n) = F(-k, 1, \xi/n)$ – вырожденная гипергеометрическая функция. Причем *k* должно быть целым неотрицательным числом (k = 0, 1, 2, ...). Это значит, что минимальное значение интенсивности E_0^2 в центре пучка, при котором имеет место безаберрационное распространение пучка в нелинейной среде, равно

$$A_0^2 = \varepsilon_0 / \varepsilon_2. \tag{6}$$

Из условия k = 0,1,2,... следует также следующая зависимость между характерной шириной пучка σ в плоскости z = 0 и максимальным значением интенсивности E_0^2 в центре пучка ($\xi = 0$) для различных значений k:

$$\sigma = (2 \cdot k + 1) \cdot \lambda_0 / \pi \cdot (\varepsilon_0)^{1/2} \cdot (\theta / (1 + \theta^2)), \tag{7}$$

где $\theta = E_0 / A_0$.

Из зависимости $(\pi \lambda_0(\varepsilon_0)^{1/2} \cdot \sigma)/\cdot \lambda_0$ от $(2 \cdot k+1) \cdot \theta$, приведенной на рис.1, следует, что распределение интенсивности недифрагирующего пучка неустойчию к изменениям ширины пучка, которые в параксиальном приближении могут быть обусловлены зависимостью ε_2 от координаты *z*, а также изменением E_0 вследствие поглощения или рассеяния [3].

Рис.1. Зависимость ширины пучка от интенсивности в центре пучка ($\xi = 0$).

С учетом того, что вырожденная гипергеометрическая функция $F(-k,1,\xi/n)$ с точностью до постоянного множителя совпадает с полиномом Лагерра, распределение поля недифрагирующего пучка (5), распространяющегося в нелинейной среде, в приближении $\xi < 1$, принимает следующий вид:

$$E(\xi) = \frac{\exp(\xi/2 \cdot n)}{k!} \cdot \frac{d^k}{d(\xi/n)^k} \cdot \left((\xi/n)^k \cdot \exp(-\xi/n)\right). \tag{8}$$

На рис.2а приведено распределение интенсивности

$$|E(\xi)|^2 = \exp(-\xi/n) \tag{9}$$

недифрагирующего пучка, полученное из выражения (8) при k = 0, $E_0 = =A_0 \, \text{м} \, \sigma = \lambda_0/2 \cdot \pi \cdot (\epsilon_0)^{1/2}$ (кривая 1). Там же приводится распределение интенсивности недифрагирующего пучка, полученное из численного интегрирования уравнения (2) при $E_0(\xi=0) = A_0$, $(dE/d\xi)_{\xi=0} = 0$ (кривая 2).

На рис.26 приведена зависимость нормированного значения среднеквадратичного отклонения аналитического решения $|E_*(\xi)|^2$ от решения, полученного численным интегрированием уравнения (2) – $S/S_0(\xi = 0)$ от $\xi^{3/2}$, где

$$S = \int_{0}^{\xi} (|E_a(\xi)|^2 - |E(\xi)|^2) \cdot d\xi.$$
 (10)

На рис.3а приведено распределение интенсивности

$$|E(\xi)|^{2} = (1 - \xi/n)^{2} \exp(-\xi/n)$$
(11)

недифрагирующего пучка, полученное из выражения (8), при $k=1, E_0==A_0$ и $\sigma = 3 \cdot \lambda_0 / 2 \cdot \pi(\epsilon_0)^{1/2}$ (кривая 1). Там же приводится распределение интенсивности недифрагирующего пучка, полученное из численного интегрирования уравнения (2) при $E_0(\xi = 0) = A_0$, $(dE/d\xi)_{\xi=0} = 0$ (кривая 2). На рис.36 приведена зависимость нормированного значения средне-

квадратичного отклонения аналитического решения $|E_a(\xi)|^2$ от решения, полученного численным интегрированием, от $\xi^{1/2}$. Как видно из рис.2 и 3 и анализа выражения (8), с увеличением значения k, т.е. с увеличением ширины пучка при заданном значении E_0 , сходимость аналитического решения к численному решению ухудшается.

Рис.2. а) Зависимости распределения интенсивностей недифрагирующего пучка от $\xi^{1/2}$, полученные из выражения (8) при k = 0 (1), и численным интегрированием уравнения (2)-(2). б) зависимость нормированного значения среднеквадратичного отклонения аналитического решения от решения, полученного численным интегрированием, от $\xi^{1/2}$ при k = 0.

Рис.3. а) Зависимости распределения интенсивностей недифрагирующего пучка от $\xi^{1/2}$, полученные из выражения (8) при k=1 (1), и численным интегрированием уравнения (2)-(2), б) зависимость нормированного значения среднеквадратичного отклонения аналитического решения от решения, полученного численным интегрированием, от $\xi^{1/2}$ при k=1.

Следует отметить, что вышеприведенные исследования формы интенсивности недифрагирующего пучка в нелинейной среде проводятся при $E_0=A_0$, т. к. с увеличением $E_0(\xi=0)$ существенную роль могут играть высшие нелинейности $\chi^{(5)}$, ... и многочастотные нелинейные эффекты, например, вынужденное рассеяние [3]:

Как видно из вышеизложенного, нормированное значение среднеквадратичного отклонения аналитического решения от соответствующего численного решения не превосходит 20% при $\xi^{1/2} < 0.14$ (k = 0) и $\xi^{1/2} < 0.12$ (k = 1).

Таким образом, благодаря линеаризации (3) удалось: 1) определить зависимость ширины недифрагирующего пучка от интенсивности, 2) получить аналитическое решение уравнения (2), в приосевом приближении, достаточно близкое к численному решению.

ЛИТЕРАТУРА

- 1. М.Б.Виноградова, О.В.Руденко, А.П.Сухоруков. Теория волн. М., 1979.
- Л.Д.Ландау, Е.М.Лифшиц. Квантовая механика (нерелятивистская теория). М., Наука, 1963.
- 3. S.Alam, C.Bentley. Proceedings of SPIE, v.3418, 14 july, Quebec, Canada (1998).

ՈՉ ԳԾԱՅԻՆ ՄԻՋԱՎԱՅՐՈՒՄ ՏԱՐԱԾՎՈՂ ՉԴԻՖՐԱԿՑՎՈՂ ՓՆՋԵՐԻ ԴՄՎՈԱՅՍԻ ՆԱԵՅՎՈՒՊՆԵՆՅՆԴ

Դ.Լ. ՀՈՎՀԱՆՆԻՍՅԱՆ

Քերված են ոչ գծային միջավայրում տարածվող չդիֆրակցվող փնջերի ինտենսիվության բաշխման տեսական հետազոտությունների արդյունքները առանցքին կից մոտավորությամբ։

INTENSITY DISTRIBUTION IN NONDIFFRACTING BEAMS PROPAGATING THROUGH A NONLINEAR MEDIUM

D.L. HOVHANNISIAN

The intensity distribution in nondiffracting beams propagating through a nonlinear medium is investigated in the near-axis approximation.

M. K. S. Sel.