УДК 517.8:537.635

## МЕХАНИЗМ ФЛУКТУАЦИЙ ФОТОПРОВОДИМОСТИ В КРИСТАЛЛАХ МОЛИБДАТА СВИНЦА

## Н.Р.АГАМАЛЯН, Э.С.ВАРТАНЯН, Р.К.ОВСЕПЯН, А.Р.ПОГОСЯН

#### Институт физических исследований НАН Армении

#### (Поступила в редакцию 20 марта 1996)

Экспериментально обнаружено резкое повышение флуктуаций тока фотопроводимости в кристаллах молибдата свинца при определенном значении интенсивности возбуждающего излучения. Предложен механизм, объясняющий возникновение аномально больших флуктуаций тока фотопроводимости в кристаллах молибдата свинца на основе квадратичного закона рекомбинации фотоэлектронов с учетом пространственно-временной зависимости тока фотопроводимости. Наблюдаемые в эксперименте аномально большие флуктуации тока фотопроводимости объясняются возникновение в фотопроводимости.

Кристаллы молибдата свинца имеют структуру шеелита и относятся к диэлектрикам с шириной запрещенной зоны ~3,3 eV. Однако экспериментальные исследования обнаружили в них множество интересных свойств, присущих полупроводникам [1]. Эти кристаллы имеют высокую фотопроводимость [2], и при освещении в них наблюдается вольт-амперная характеристика N-типа [3]. Интенсивная фотопроводимость наблюдается при освещении кристаллов светом с энергией фотона меньше ширины запрещенной зоны [1,2]. Возможно, это связано с наличием в запрещенной зоне подзоны, расположенной выше валентной зоны на ~0,7 eV. В представленной работе исследовалась фотопроводимости при различных интенсивностях динамика тока возбуждающего света. На основе стохастического метода предложена • характер флуктуаций модель. качественно описывающая тока фотопроводимости в кристаллах молибдата свинца.

## 1. Методика измерений и полученные результаты

Измерения проводились на номинально чистых и легированных ионами железа кристаллах молибдата свинца, выращенных методом Чохральского из шихты строго стехиометрического состава,

приготовленной твердофазным синтезом по специальной технологии [4]. Образцы для измерений имели форму параллелепипеда с размерами 10x10x2 MM<sup>3</sup>. Алюминиевые электроды наносились на грани. перпендикулярные тетрагональной оси, свет проходил через две другие грани. Кристалл молибдата свинца освещался непрерывным излучением аргонового лазера с  $\lambda$ =488 nm. Плотность мошности освещающего лазерного излучения регулировалась при помощи ослабителя и изменялась в диапазоне 0-10 W/cm<sup>2</sup>. К кристаллу прикладывалось внешнее постоянное электрическое поле (50V). Электрический сигнал регистрировался с помощью усилителя постоянного тока или усилителя переменного тока с полосой пропускания 0,01-150 kHz и входным импедансом 100 MΩ и 5pF. При использовании усилителя переменного тока экспериментальная схема регистрировала флуктуации фотопроводимости и не реагировала на токи фотопроводимости, т. к. усилитель не пропускал нулевую частоту. При плавном изменении интенсивности освещающего излучения в некотором диапазоне наблюдалось резкое возрастание амплитуды незатухающих флуктуаций тока фотопроволимости. Вместе с тем измерялась зависимость тока фотопроводимости о. интенсивности освещения с применением усилителя постоянного тока. Полученные результаты приведены на рис.1. Зависимость постоянной составляющей тока фотопроводимости от интенсивности имеет явно выраженный бистабильный характер [5].

## 2. Обсуждение результатов

Аномальное увеличение флуктуаций тока фотопроводимости кристалла молибдата свинца можно объяснить на основе балансного уравнения для фотоэлектронов. Обозначая через *n*(*t*) концентрацию фотоэлектронов, фотоионизированных из подзоны в зону проводимости, можно записать балансное уравнение в виде [6]

$$\frac{dn}{dt} = an + bn^2 + F, \qquad (1)$$

где a и b – коэффициенты, характеризующие мономолекулярную и бимолекулярную рекомбинацию фотоэлектронов из зоны проводимости; F=kI является скоростью генерации фотоэлектронов в зону проводимости, k – коэффициент поглощения с учетом квантового выхода, l – интен-

75

## сивность освещающего излучения; a<0, b<0 и F>0.



Рис.1 Зависимость тока фотопроводимости *J* от интенсивности освещающего излучения *I*. (1-область интенсивностей с аномально большими флуктуациями).

Перенормировав управляющие параметры *a*, *F* и переменную *n*(*t*) по отношению к управляющему параметру *b*, приведем уравнение (1) к канонической форме и тогда получим уравнение с двумя новыми управляющими параметрами (*a* и *F*). Проинтегрировав это уравнение, получим

$$n(t) = \frac{p + qn_0 \exp[t(q - p)]}{1 + n_0 \exp[t(q - p)]} ; \quad p \neq q,$$
(2)

где  $n_0$ -константа, определяющая начальное значение  $n(0)=(p+qn_0)/(1+n_0)$ концентрации фотоэлектронов; p>q-корни полинома уравнения (1). Выражение (2) в случае, когда  $t \rightarrow \infty$ , имеет два стационарных решения  $n_S = p$ ; q. Когда  $n_S = q$ , система глобально неустойчива, а когда  $n_S = p$ , система асимптотически и глобально устойчива.

На рис.2 представлеча форма многообразия стационарных состояний "s от управляющих паралетров (а и F) и проекция критических точек этого многообразия на плоскость управляющих параметров. Точки на поверхности 2 формы многообразия соответствуют глобально неустойчивым, а на поверхности 1 –асимтотически и глобально устойчивым состояниям динамической системы. Область существования

76

двух действительных корней выражения (1) заканчивается на линии сепаратрисы 3 (рис.2). Согласно [7], эта форма многообразия называется катастрофой типа складки, или катастрофой  $A_2$ .



Рис.2. Форма многообразия состояний фотоэлектронов в пространстве управляющих параметров (*n-a-F*). Все точки на нижней поверхности (1) этого многообразия представляют асимптотически устойчивые состояния, а точки на верхней поверхности (2) – неустойчивые состояния. Верхняя и нижняя поверхности сходятся и имеют сепаратрису (3), которая спроектирована (4) на плоскость управляющих параметров (*a-F*).

Из рис.2 видно, что при фиксированных значемиях управляющих параметров  $a_i$  и  $F_i$  возможны два стационарных состояния концентрации фотоэлектронов  $n_s$  и  $n_s$  ", и это приводит к двум значениям фототока. При увеличении интенсивности освещения (управляющий параметр F) и фиксированном значении управляющего параметра  $a_i$  может реализоваться ситуация, когда эти состояния приближаются настолько, что величина разделяющего их энергетического барьера становится меньше или порядка флуктуаций динамической системы. И тогда становится возможным самопроизвольный переход из одного состояния в другое. Далее мы рассмотрим именно такое поведение. Описанная в нашем эксперименте диссипативная система непрерывно подвергается воздействию флуктуаций лазерного излучения. С учетом этого уравнение (1) становится стохастическим дифференциальным уравнением вида

$$\frac{dn}{dt} = n^2 + an + F + \zeta(t) , \qquad (3)$$

где  $\zeta(t)$ - флуктуирующая компонента интенсивности лазерного излучения. Учитывая, что минимальное время наблюдения больше времени когерентности лазера [8], флуктуации подчиняются условиям Гаусса-Маркова с  $\langle \zeta(t) \rangle = 0$ . Проанализируем уравнение (1) с помощью теории катастроф [7]. Это уравнение можно представить как

$$\frac{\partial n(t)}{\partial t} = -\frac{\partial V(n,a,F)}{\partial n} . \tag{4}$$

Уравнение (4) согласно этой теории является уравнением автономной динамической системы "возбуждающее излучение-фотопроводник", где  $V(n,a,F) = \frac{1}{3}n^3 + \frac{a}{2}n^2 + Fn$  является потенциальной функцией динамической системы. Стохастические динамические системы описываются вероятностной функцией распределения P(n,a,F), которая связана с потенциальной функцией V(n,a,F) посредством уравнения фоккера-Планка. В том случае, когда управляющие параметры не изменяются и потенциальная функция не зависит от времени, уравнение Фоккера-Планка имеет стационарно-экспоненциальное решение вида

$$P(n,a,F) = N \exp[\frac{1}{Q}V(n,a,F)] ,$$

где Q – константа, описывающая диффузию динамической системы в фазовом пространстве в направлении с меньшей энергией, и обусловленная флуктуациями лазера  $2Q\delta(t-t') = \zeta(t)\zeta(t') > .$  С учетом потенциальной функции получим

$$P(n,a,F) = N \exp[\frac{1}{Q}(\frac{1}{3}\dot{n}^3 + \frac{a}{2}n^2 + Fn)].$$
(5)

Из распределения (5) можно рассчитать дисперсию  $< \Delta n^2 > \phi$ луктуаций фотоэлектронов. При  $p \rightarrow q$  кривизна потенциальной функции стремится

к нулю, поэтому дисперсия в окрестности этой точки достигает аномально большого значения и может быть представлена гамма-функцией:

$$<\Delta n^2>=(3Q)^{1/3}\Gamma(3/4).$$

Между двумя близкими по энергиям стационарными состояниями (p и q близки по значению, но не равны) связь осуществляется с помощью флуктуаций. Временная зависимость вероятностной функции распределения фотоносителей (5) имеет два временных масштаба:  $T_i$  – время релаксации системы к локальному минимуму и  $T_2$  – время релаксации из метастабильного минимума: в глобальный минимум. Согласно [9], для динамических систем  $T_1$  и  $T_2$  имеют вид:

$$T_1 = \frac{1}{\lambda}; \ T_2 = \frac{2\pi}{\sqrt{|\lambda_1 \lambda_2|}} \exp(\frac{\Delta V}{Q}),$$

где  $\lambda_{\mu} \lambda_{2}$  – к ривизна потенциальной функции в локальном минимуме и максимуме, соответственно;  $\Delta V = V_{max} - V_{min}$ . В динамических системах, в которых выполняется условие  $\Delta V/Q \ge 1$ , существуют два сильно отличающихся временных масштаба, т.е.  $T_{2} >> T_{1}$ . Резкое увеличение флуктуаций можно объяснить уменьшением времени  $T_{2}$  до значений, когда  $1/T_{2}$  входит в диапазон частот полосы усилителя. В описанной динамической системе уменьшение временного масштаба  $T_{2}$  происходит вследствие уменьшения  $\Delta V$ . Наблюдаемые аномально большие флуктуации обусловлены многократными переходами системы из одного состояния в другое в течение экспериментального масштаба времени.

Если в первой части настоящей статьи рассматривается только временная зависимость тока фотопроводимости в приближении пространственно однородного распределения фотоэлектронов, то далее перейдем к обсуждению одномерной пространственно-временной зависимости тока фотопроводимости. Дополним уравнение (1) двумя пространственными компонентами, описывающими диффузию и дрейф фотоэлектронов. Тогда дифференциальное уравнение будет иметь вид

79

$$\frac{\partial n(x,t)}{\partial t} = D \frac{\partial^2 n(x,t)}{\partial x^2} + H \frac{\partial n(x,t)}{\partial x} + n^2(x,t) + an(x,t) + F, \qquad (6)$$

где  $H = \mu E$ , E – напряженность внешнего поля,  $\mu$  – подвижность, D – коэффициент диффузии и H – дрейфовая скорость фотоэлектронов. Из-за невозможности прямого аналитического рещения уравнения (б) найдем его решение в виде стационарной волны; зависящей лишь от бегущей координаты  $\xi = x - vt$ . С учетом потенциальной, функции динамической системы уравнение (б) запишется в виде

$$D\frac{d^2n}{d\xi^2} + (\nu + H)\frac{dn}{d\xi} = -\frac{dV(n, a, F)}{dn}.$$
 (7)

Уравнение (7) является уравнением для нелинейного осциллятора, с затуханием. Состояние равновесия этой системы находят из условия  $\nabla V = 0$ , и точками равновесия являются  $n_1 = p$ . и  $n_2 = q$ . Для определения типа состояния равновесия составим характеристическое уравнение  $Ds^2 + (v+H)s + (n_{1,2}-a) = F$ . Это уравнение получено в приближении  $n = n_{1,2} + \exp(s\xi)$ . При этом состояниями равновесия являются:  $n_1 -$  седло,  $n_2 -$ узел при условии  $[(v+H)^2 - 4Da] > 0$  и  $n_2 -$ фокус. при условии  $[(v+H)^2 - 4Da] < 0$ .

Решение уравнения (7) имеет вид солитона [10], если фазовый портрет системы имеет вид фокуса, т.е. когда выполняется условие [(v+H)<sup>2</sup>-4Da]<0:

$$n(x,t) = 3a\{ch^{-2}[(a/D)^{1/2}(x+Ht)]\}.$$
(8)

Из решения (8) следует, что бетущая волна может распространяться со скоростью  $H_0$  и выше. Существование минимальной скорости распространения солитона  $H_0$  является следствием того, что фотопроводники – это диссинативные среды без дисперсии. Выражение (8) показывает, что в рассматриваемой модели пространственновременной зависимости фотопроводимости существует стационарное решение в виде одномерного солитона [10], который неустойчив к флуктуациям и распадается на отдельные волны. Именно такие солитоны наблюдаются в наших экспериментах при измерениях фотопроводимости кристаллов молибдата свинца.

Таким образом, с использованием стохастической модели и уравнения Фоккера-Планка предложен механизм возникновения аномально больших флуктуаций тока фотопроводимости, обусловленных флуктуациями лазерного излучения в кристаллах с квадратичной рекомбинацией фотоэлектронов. На основе пространственно-временных баланса для фотоэлектронов уравнений предложен механизм: возникновения флуктуаций, обусловленных пространственным движением солитонов в фотопроводнике.

#### ЛИТЕРАТУРА

- 1. E.F.Peyr. ФТТ, 23, 2514 (1981).
- 2. J.A.Groewink, D.A.van Weser. Phys.Stat.Sol., 49(a), 651 (1978).
- 3. Н.Р.Агамалян, Э.С.Вартанян, Р.К.Овсепян. Изв. НАН Армении, Физика, 29, 222 (1994).
- Н.Р.Агамалян, Э.С.Вартанян, И.А.Гамбарян, Л.М.Казарян, Р.Б.Костанян, Р.С.Микаелян, Р.К.Овсепян. Докл. НАН РА, 95, 94 (1995).
- 5. Э.С.Вартанян, Р.К.Овсепян, А.Р.Погосян. Изв. АН Арм.ССР, Физика, 23, 56 (1988).
- 6. Р.Бьюб. Фотопроводимость твердых тел. М., ИИЛ, 1962.
- 7. Г.Гилмор. Прикладная теория катастроф. М., Мир, 1984.
- 8. У.Люиселли. Излучение и шумы в квантовой электронике. М., Наука, 1972.
- 9. R.Gilmore. Phys. Rev., A20, 2510 (1979).
- 10. Л.А.Тахтаджян, Л.Д.Фаддеев. Гамильтонов подход в теории солитонов. М., Наука, 1986.

# MECHANISM OF PHOTOCONDUCTIVITY FLUCTUATIONS

#### N.R.AGAMALYAN, E.S.VARTANYAN, R.K. HOVSEPYAN, A.R.POGOSYAN

A sharp increase of photoconductivity current fluctuations is observed experimentally in lead molybdate crystals for definite values of exciting radiation intensity. A mechanism explaining the arising of anomalously great fluctuations of photoconductivity current in lead molybdate crystals taking into account the spatial-temporal dependence of photoconductivity current is proposed on the base of quadratic law of photoelectrons recombination. The experimentally observed anomalously great fluctuations of photoconductivity current are explained by one-dimensional soliton arising in the photoconductor.

#### ՖՈՏՈԷԼԵԿՏՐԱԿԱՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԻ ՅՈՒՐԱՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ ԿԱՊԱՐԻ ՄՈԼԻԲԴԱՏԻ ԲՅՈՒՐԵՂՆԵՐՈՒՄ

### Ն.Ռ.ԱՂԱՄԱԼՅԱՆ, Է.Ս.ՎԱՐԴԱՆՅԱՆ, Ռ.Կ.ՀՈՎՍԵՓՅԱՆ, Ա.Ռ.ՊՈՂՈՍՅԱՆ

Մոլիբդատի կապարի բյուրեղների ֆոտովոլտային հատկությունները հետազոտելիս հայտնաբերված են սիմետրիայի կենտրոն ունեցող բյուրեղների համար արգելված ֆոտովոլտային հոսանքներ, որոնք առաջանում են 488նմ ալիքի երկալություն ունեցող լույաղ նրանց լուսավորելիս։ Հոսանքների առաջացումը բացատրվում է կապարի մոլիբդատի բյուրեղներում սիմետրիայի կենտրոն չունեցող կոմպլեքսների առկայությամբ։