Известия НАН Армении, Физика, т. 30, №1, с. 8-13 (1995)

УДК 539.186.3:538.61

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ РАЗНОСТНОГО ПОТЕНЦИАЛА ВЗАИМОДЕЙСТВИЯ АТОМОВ НАТРИЯ И АРГОНА ПО РЕЗУЛЬТАТАМ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ПОГЛОЩЕНИЯ ВБЛИЗИ *D*-ДУБЛЕТА *Na* АБСОРБЦИОННО-ПОЛЯРИЗАЦИОН-НЫМ МЕТОДОМ

А. М. БАДАЛЯН, М. Е. МОВСЕСЯН, В. О. ЧАЛТЫКЯН

Институт физических исследований НАН Армении

(Поступило в редакцию 15 декабря 1993 г.)

Измерен коэффициент поглощения вблизи D-дублета в парах натрия при наличии аргона под давлением 50 Тор в области спектра до $50 \,\mathrm{cm}^{-1}$ с длинноволновой стороны от линии D_1 и с коротковолновой стороны от D_3 . Измерения проведены с использованием разработанной ранее абсорбционно-поляризационной методики. По полученным экспериментальным данным вычислены параметры разностного потенциала взаимодействия атомов натрия и аргона.

Хорошо известно, что линии поглощения (или испускания) атомов, испытывающих столкновения с другими атомами, становятся асимметричными, так как сечения оптических столкновений зависят от величины и знака частотного расстояния от центра линии за пределами ударной области спектра. Эта асимметрия объясняется зависимостью квазимолекулярных энергетических термов от межатомного расстояния, так что форма атомной линии непосредственно связана с потенциалами взаимодействия сталкивающихся атомов и, таким образом, может служить хорошей проверкой различных теоретических расчетов, проводившихся последние 20-30 лет (см., например, один из последних обзоров [1]).

Большая часть экспериментальных работ в этой области проделана с атомами щелочно-земельных и щелочных металлов, возмущаемых атомами инертных газов (см., например, [2—5], а также ссылки в этих работах), причем наибольшее внимание среди щелочных металлов уделяется тяжелым, а именно цезию [6] и рубидию [4], поскольку эти атомы имеют большой интервал тонкой структуры в первом возбужденном состоянии. Атомы натрия исследовались лишь в сравнительно небольшом количестве работ, например, в [7, 8]. Во всех экспериментах с парами как щелочно-земельных, так и щелочных металлов либо применялся метод возбуждения флуоресценции (например, [7]), либо измерялся непосредственно спектральный коэффициент поглощения одновременно с крюками Рождественского (например, [4]).

В настоящей работе сделана попытка измерения профиля *D*-дублета натрия в атмосфере аргона абсорбционно-поляризационным методом, разработанным и реализованным ранее [9, 10] для измерения поперечников оптических столкновений.

Если линейно-поляризованное слабое излучение с широким спектром распространяется в резонансной атомарной среде при наличии буферного газа и внешнего постоянного продольного магнитного поля, то перпендикулярная (падающей) составляющая прошедшей интенсивности определяется выражением

$$J_{\perp}(\Delta \omega) = J_{0} e^{-\gamma(\Delta \omega) l} \sin^{2} \Phi(\Delta \omega) l, \qquad (1)$$

где J_0 —интенсивность падающего излучения, $\alpha(\Delta \omega)$ — спектральный коэффициент поглощения, $\Phi(\Delta \omega)$ —угол фарадеевского вращения на единицу длины, l—длина среды. Частотная расстройка от резонанса определяется как $\Delta \omega = \omega - \omega_0$, где ω —частота излучения, а ω_0 —частота атомного перехода. Для двухуровневой модели атома в случае слабого поля излучения коэффициент поглощения и угол поворота определяются выражениями

$$\alpha(\Delta \omega) \sim \frac{N\Gamma}{\Delta \omega^2 + \Gamma^2/4}, \quad \Phi(\Delta \omega) \sim \frac{N\Omega}{\Delta \omega^2 + \Gamma^2/4},$$
 (2)

где N—концентрация резонансных атомов, Ω —ларморова частота, а Г—полная ширина атомной линии, являющаяся суммой естественной и столкновительной ширин. При достаточно большом давлении буферного газа ширина линии определяется только столкновениями с атомами буферного газа: $\Gamma = \Gamma_c$. В этом случае выражение (2) для $\alpha(\Delta\omega)$ является лоренцианом в ударной области спектра и модифицированным лоренцианом [11] вне этой области ($|\Delta \omega| \gg \Gamma_c/2$):

$$\alpha(\Delta\omega) \sim \frac{N\gamma(\Delta\omega)}{\Delta\omega^2 + \Gamma_c^2/4} \simeq \frac{N\gamma(\Delta\omega)}{\Delta\omega^2} = N\pi S(\Delta\omega); \qquad (3)$$

здесь ; (Δω) — столкновительная ширина линии, зависящая от частоты вне ударной области спектра.

Исследование экстремумов функции (1) показывает наличие максимумов на частотах $\Delta \omega_{\pm} \sim \sqrt{\gamma_{\pm} N l}$. Индексы «+» и «--» относятся соответственно к коротковолновому и длинноволновому крыльям линии поглощения. Таким образом, измеряя положение максимумов в спектре $J_{\pm}(\Delta \omega)$, можно определить столкновительную ширину на соответствующей частоте и, следовательно, профиль линии $S(\Delta \omega)$. Точность этих измерений не хуже 10% [9]. Пиковая и полная интенсивности в максимумах также связаны с $\gamma_{\pm}(\Delta \omega)$, так что измерение этих величин дает второй, независимый способ определения $\gamma_{\pm}(\Delta \omega)$, точность которого порядка 3% [9]. Основными достоинствами изложенного метода являются его простота и высокая чувствительность (обеспечиваемая эффектом Фарадея), что приводит к хорошей точчости измерения профиля линии в оптически плотной среде.

Эксперимент проводился на установке, подобной описанной в [9]. Использовалась обычная металлическая кювета с l=20 см. Магнитное поле в кювете создавалось системой двух катушек Гельмгольца. Источником света служил импульсный перестраиваемый лазер на красителе родамии 6Ж с накачкой от пеодимового лазера. Мощность импульса лазера на красителе составляла 100кВт при длительности импульса лазера на красителе составляла 100кВт при длительности 20нс и спектральной ширине 0,1см⁻¹. Кювета содержала пары натрия 20нс и спектральной ширине 0,1см⁻¹. Кювета содержала пары натрия с $N=4\cdot10^{14}$ см⁻³ (при T=500 K) и аргон под давлением 50 Тор. Изс $N=4\cdot10^{14}$ см⁻³ (при T=500 K) и аргон под давлением 50 Тор. Излучение, проводились при напряженности магнитного поля 8 кА/м. Измерения проводились при напряженности магнитного поля 8 кА/м. Излось спектографом ИСП-51 с камерой УФ-90. Лазер на красителе перестраивался в области *D*-дублета натрия, измерялись положения максимумов функции (1), а также их пиковые и интегральные интенсивности, после чего по соответствующим формулам [9—10] рассчитывались величины NI и профиль линии $S(\Delta \omega)$.

Измеренный таким образом профиль линии показан на рис. 1 в логарифмическом масштабе для длинноволнового крыла линии D₁

Профиль D-дублета натрия в присутствии аргона; расстройка отсчитывается от центра линин D_1 для $\Delta \omega < 0$ и от центра линии D_2 для $\Delta \omega > 0$.

и коротковолнового крыла линии D_2 . Как видно из рисунка, для значений расстройки $|\Delta \omega| < 5$ см (ударная область) профиль линии симметричен и линейно спадает с наклоном, равным —2, что соответствует лоренциану с независящей от частоты столкновительной шириной, равной $\Gamma_c \simeq 2,15 \cdot 10^9$ с⁻¹ (отсюда следует, что уже для $|\Delta \omega| > 1$ см⁻¹ имеем $\Delta \omega^2 \gg \Gamma_c^2/4$ и $S(\Delta \omega) = \gamma (\Delta \omega) / \pi \Delta \omega^2$ с большой точностью). Полученная цифра хорошо согласуется с результатами из-

10

мерений других авторов, сводка которых приведена в [12]. Для $|\Delta\omega| > 5 \text{ см}^{-1}$ наблюдается асимметрия профиля. В длинноволновой обл сти результаты измерений хорошо аппроксимируются прямой с наклоном $\sim -1, 5 - -1, 6$ ло значения $\Delta\omega_s \simeq -12, 5 \text{ см}^{-1}$. Поведение в области вокруг $\Delta\omega_s$ может быть интерпретировано как "размытая" сателлитиая структург, а при $|\Delta\omega| > |\Delta\omega_s|$ наблюдается спад, близкий к экспоненциальному. В коротковолном крыле дублета наблюдается также линейный спад с наклоном—2,3 в области 5 см⁻¹ $<\Delta\omega < 20 \text{ см}^{-1}$. В области от 20 до 30 см⁻¹ также имеется линейный спад (наклон—1,4), и для $\Delta\omega > 30 \text{ см}^{-1}$ спад близок к экспоненциальному, так что можно предположить наличие нечеткого сателлита также и в синей об-

Закон -«1,5» в длинноволновой области спектра сразу за пределами ударной области наблюдался во многих работах с различными газами (см., например, [2, 4]). Он объясняется квазнстатическим выражением для профиля линии в предположении вандерваальсовского взаимодействия сталкивающихся атомов $\Delta V(R) =$ —∆С₆R⁻⁶, где ∆V(R) — разностный потенциал взаимодействия при расстоянии R между атомами, а ΔC_6 -разность констант лер ван Ваальса в возбужденном и основном состояниях атома Na. Учитывая, что согласно принципу Франка-Кондона $\Delta V(R) = \hbar \Delta \omega$, и привязывая экспериментальный профиль обычным образом к формуле для профиля, получаемой согласно квазистатической теории (считаем Vo(R) « (ΔkT) , где V(R) – потенциал основного состояния) $S(\Delta \omega) = (2/3) N_{AI} (\Delta C_s)$ /h)^{1/2} · |Δω| -3/2, имеем для ΔС, системы Na-Ar значение 9 · 10-58 эрг. см⁶, которое близко к полученному в [7] для системы Na-Xe (параметра AC, для Na-Ar нами не было найдено в литературе). Отметим, что величина АС, относится к некоему эффективному, усредненному разностному потенциалу; параметры потенциалов различных квазимолекулярных термов, стремящихся при R→∞ к энергиям атомных состояний З²Р_{1/2.3/2}, будут измерены в последующих работах. Отметим также, что согласно ударному приближению величины Г_с и ΔС_в связаны соотношением Г_с=4,04 NAI (ΔC_n/ħ)^{2/5}v^{3/5} [2]; считая v≈8 · 10⁴ см/с для Т=500 К (средняя относительная скорость атомов натрия и аргона), и используя полученное выше значение ΔC_a, приходим к столкновительной ширине~2,5 · 10° Гц, что отличается от резултата измерения на ~10%.

Возникновение сателлитов на профиле линии обусловлено наличием экстремумов разностного потенциала (см., например, [2]). Для определения параметров экстремума, соответствующего сателлиту $\Delta \omega_s = -12.5 \text{ см}^{-1}$ на длинноволновом крыле, аппроксимируем функцию $\Delta V(R)$ в этой области параболическим потенциалом вида $\Delta V(R) = -\varepsilon(1 - -K(R-R_m)^2/R_m^2)$, где R_m -положение минимума, ε -глубина потенциальной ямы, а K-параметр кривизны. Глубина ямы определяется местоположением той точки на профиле, интенсивность в которой составляет 65% от интенсивности в пике сателлита [2,4]. Расчет по

11

измеренному профилю дает $|\Delta \omega'_s| = 20$ см⁻¹, откуда получаем $s = -b\Delta \omega'_s = -\Delta V(R_m) \simeq 6,3 \cdot 10^{-16}$ эрг. Плавный переход вандерваальсовского потенциала в параболический имеет место при $R_m = 9,6$ Å, K = 10,8, а при $R \sim R_0 \approx 6,7$ Å $\Delta V(R)$ обращается в нуль. Таким образом, изучение ближних крыльев ($|\Delta \omega| \leq 50$ см⁻¹) дает информацию о разностном потенциале в области межатомных расстояний $R \gtrsim 7$ Å. Насколько нам известно, измерения для системы Na - Ar проводились в этой области расстояний лишь в работе [13]. Данные, полученные в настоящей работе, неплохо согласуются с результатами [13] и с теоретическими вычислениями в [14].

Что касается коротковолнового крыла, то, предполагая, что в непосредственной близости от центра линии оно обусловлено степенным разностным потенциалом отталкивания вида $\Delta C_n R^{-n}$, получим наблюдаемый линейный спад в коротковолновом крыле при $n \sim 2,3$; при этом величина ΔC равна примерно 10^{-32} эрг · см^{2.3}. В этой области спектра результаты плохо согласуются с резултатами [13], а в других измерениях с натрием либо рассматриваются дальние крылья [8] (межатомные расстояния порядка нескольких ангстрем), либо исследуется натрий, возмущаемый другими газами (например, [7]).

Отметим в заключение, что довольно значительные расхождения между данными различных авторов по коротковолновому крылу линии натрия и небольшие расхождения по длинноволновому крылу объясняются, по-видимому, ограниченной применимостью двухуровневой модели для интерпретации результатов измерений в ближних крылях *D*-дублета из-за малости величины тонкого расщепления.

Настоящая работа выполнена при частичной поддержке грантом фонда Мейера, присужденным Американским Физическим Обществом.

ЛИТЕРАТУРА

- 1. N. Allard and J. F. Kielkopf. Rev. Mod. Phys., 54, 1103 (1982).
- 2. W. J. Alford, N. Andersen, K. Burnett and J. Cooper. Phys. Rev., A30, 2366 (1984).
- А. М. Бонч-Бруевич, С. Г. Пржибельский, А. А. Федоров, В. В. Хромов. ЖЭТФ, 71, 1733 (1976).
- 4. П. Я. Кантор, Л. Н. Шабанова. Опт, и спектр., 58, 1008 (1985); 59, 685 (1985).
- 5. A. Gallagher. Acta Phys. Pol., A54, 761 (1978).
- 6. R. E. M. Hedges. D. L. Drummond and A. Gallagher. Phys. Rev., A6, 1519 (1972).
- 7 K. J. Nieuwesteeg, J. A. Leegwater, Tj. Hollander and C. Th. J. Alkemade. J. Phys. B, At. Mol. Phys., 20, 487 (1987).
- 8. G. York, R. Scheps and A. Gallagher. J, Chem, Phys., 63, 1052 (1975).
- 9. А. М. Бадалян, Б. А. Глушко, А. А. Дабагян, М. Е. Мовсесян. ЖПС, 45, 369 (1986).
- 10. А. М. Бадалян, Б. А. Глушко, М. Е. Мовсесян. Опт. и спектр., 68, 1266 (1990).
- 11. С. И. Яковленко. «Столкновения и поглощение резонансного излучения в среде; слебые поля», Москва, 1980.
- 12. J. L. Lemaire, J. L. Chotin, F. Rostas. J. Phys. B: At. Mol. Phys, 19, 1913 (1986).

 M. J. Jongerius, A. R. D. van Bergen, Tj. Hollander and C. Th. J. Alkemade. JQSRT, 25, 1 (1981).

14. J. Pascale and J. Vandeplanque. J. Chem. Phys., 60, 2278 (1974).

DETERMINATION OF PARAMETERS OF Na-Ar INTERACTION DIFFERENCE POTENTIAL FROM SODIUM D-DOUBLET PROFILE MEASUREMENTS BY ABSORPTION—POLARIZATION TECHNIQUE

A. M. BADALYAN, M. E. MOVSESSIAN, V. O. CHALTYKYAN

The absorption line of D-doublet has been measured in sodium vapour in the presence of 50 Torr argon in the spectral region up to 50cm^{-1} on the red wing of D₁ and the blue wing of D₂. Measurements have been performed with use of absorption-polarization technique developed earlier. Using the obtained experimental data the parameters of difference potentials of interaction between sodium and argon atoms were determined.

ՆԱՏՐԻՈՒՄԻ ԵՎ ԱՐԳՈՆԻ ԱՏՈՄՆԵՐԻ ՓՈԽԱԶԴԵՑՈՒԹՅԱՆ ՊՈՏԵՆՑԻԱԼՆԵՐԻ ՏԱՐԲԵՐՈՒԹՅԱՆ ՊԱՐԱՄԵՏՐԵՐԻ ՈՐՈՇՈՒՄԸ ՆԱՏՐԻՈՒՄԻ D-ԴՈՒԲԼԵՏԻ ՇՐՋԱԿԱՅՔՈՒՄ ԿԼԱՆՈՂԱ-ԲԵՎԵՌԱՑՈՒՄԱՅԻՆ ՄԵԹՈԴԻ ՕԳՆՈՒԹՅԱՄԲ ԿԼԱՆՄԱՆ ԳՈՐԾԱԿՑԻ ՉԱՓՄԱՆ ԱՐԴՅՈՒՆՔՆԵՐՈՎ

Ա. Մ. ԲԱԳԱԼՅԱՆ, Մ. Ե. ՄՈՎՍԵՍՅԱՆ, Վ. Օ. ՉԱԼԹԻԿՅԱՆ

Նատրիումի գոլորշիների և 50 Տոր ճնշմամբ արգոնի գաղի խառնուրդում չափվել է կլանման գործակիցը նատրիումի D-դուբլետի շրջակայքում։ Չափումները կատարվել են ավելի վաղ մշակված կլանումա-բեեռացումային մենոդի օդնունյամբ։Օգտագործելով ստացված էքսպերիմենտալ տվյալները հաշվվել են նատրիումի և արգոնի ատոմների փոխազդեցունյան պոտենցիալների տարբերունյան պարամետրերը։