Известия НАН Армении, Физика, т. 29, № 6, с. 246-251 (1994) УДК 621.373.826

СПЕКТРАЛЬНЫИ КОМПРЕССОР ПИКОСЕКУНДНЫХ ИМПУЛЬСОВ

Ф.З.ЗОГРАБЯН, Н.Л.МАРКАРЯН, Л.Х.МУРАДЯН, Т.А.ПАПАЗЯН

Ереванский государственный университет. (Поступила в редакцию 7 октября 1994 г.)

На базе дисперсионной линнии задержки и одномодового волоконного световода создан и апробирован спектральный компрессор пикосекундных лазерных импульсов. Представлены результаты экспериментальной реализации процесса спектральной компрессии.

Техника волоконно-оптической компрессии (ВОК), основанная на явлениях фазовой самомодуляции излучения в одномодовом волоконном световоде (OBC) и последующей амплитудной модуляции в дисперсионной линии задержки (ДЛЗ), широко используется для формирования сверхкоротких лазерных импульсов (СКИ) и управления их параметрами [1]. Развитие идеи ВОК на основе обратимости явления и спектрально-временной аналогии к выявлению процесса спектральной компрессии. привело Предложенный и проанализированный в [2,3] спектральный компрессор состоит из обычных устройств техники ВОК - ДЛЗ и ОВС: в ДЛЗ СКИ удлиняются, получая отрицательную линейную частотную модуляцию (ЧМ, чирп), а последующее их нелинейное самовоздействие в ОВС приводит к гашению чирпа и сжатию спектра. Брито Круз и др. в [4] проанализировали специфику процесса для СКИ лазеров на полупроводниках и титанате сапфира. Использование спектрального компрессора в качестве эффективного нелинейного фильтра шумов обсуждается в [5,6]. В [7.8] анализированы режимы процесса, при которых спектральное распределение излучения воспроизводит по форме начальную временную огибающую, сводя тем самым задачу сверхтонких временных измерений к традиционной технике спектрометрии. Замена ОВС уникальным электрооптическим модулятором в [9] позволила реализовать подобную идею в пикосекундном диапазоне. Однако, если временное разрешение системы [9] зависит от успехов техники электрооптики, то использование для данной цели спектрального компрессора с ОВС в качестве базового элемента, не ограничивало бы разрешение подобных систем вплоть до фемтосекунд. Аналитические и численные исследования спектральной компрессии [2-8] выявили характерные особенности, оптимальные режимы и перспективы применения процесса, послужив основой для экспериментальных исследований, а в дальнейшем и разработок систем контроля за параметрами излучения и управления ими.

Целью настоящей работы является создание и апробация системы спектральной компрессии, предметом - первые экспериментальные исследования основных закономерностей процесса.

1. Схема экспериментальной установки приведена на рис.1: она состоит из задающего генератора, спектрального компрессора и системы регистрации. Задающим генератором (1) служит твердотельный YAG:Nd в лазер с пассивной синхронизацией мод, работающий с частотой повторения 20Гц. В эксперименте используется вторая гармоника (ВГ) излучения генератора - λ = 0,532мкм.

Спектральный компрессор для пикосекундных СКИ состоит из компактной ДЛЗ, обеспечивающей в лабораторных условиях задержки T>100пс [10], и кварцевого, одномодового на длине волны излучения, световода длиной 10м. ДЛЗ выполнена на базе "четырехпроходной" схемы компрессора Треси [11], с помещением между решеткой (4) и призмой (6) оптической системы (5) - для достижения необходимых временных задержек при разумных значениях ее базы [10]. Для ввода излучения в ОВС и вывода из нее используются стандартные 20^x микроскопические объективы.

247

Рис 1. Схема экспериментальной установки:

1 - задающий генератор; 2,12,15 - полупрозрачные зеркала; 3,7,8 - зеркала; 4 - дифракционная решетка; 5 - оптическая система; 6 - призма-"крыша"; 9,11 - вводной и выводной микрообъективы; 10 - ОВС; 13 интерферометр Фабри-Перо; 14- фотоаппарат; 16,17,18 - призмы; 19 фокусирующая линза; 20 - нелинейный кристалл KDP; 21 - фотоэлектронный умножитель ФЭУ-18А; 22 - коррелятор.

В эксперименте предусмотрены измерения временных и спектральных параметров излучения на входе в компрессор и на выходе из нее. Система регистрации построена на базе коррелятора (22) и интерферометра Фабри-Перо (13). Коррелятор выполнен по интерферометра Майкельсона: по стандартной методике схеме измерения длительности СКИ, в кристалле KDP(20) толщиной 2мм, генерируется неколлинеарная вторая гармоника на длине волны λ=0,265мкм и с помощью ФЭУ-18А (21) прописывается корреляционная функция интенсивности. Для спектральных измерений выбрана база инерферометра 5мм, что соответствует области свободной дисперсии $\Delta v = 1 \text{ см}^{-1}$. Значения ширины спектральных линий на входе в систему и на выходе из нее определяются путем фотографической регистрации интерференционных колец и обработкой спектрограмм на микроденситометре "Карлцейсс-100" с учетом кривой почернения использованной фотопластинки.

2. Экспериментальные исследования на описанной выше установке проводились следующим образом. Часть излучения генератора с помощью полупрозрачного зеркала (2) подавалась в систему регистрации. Параметры излучения на входе в спекткомпрессор составляли: длительность импульсов ральный τ=35пс, спектральная ширина линий Δλ=0,21Å. Зеркало (3) направляло другую часть излучения на дифракционную решетку (4) с периодом 1200мм⁻¹. Угол падения выбран у≈-14°, что соответствует углу отражения в первом максимуме дифракции 0~600 Лалее дифрагированный пучок проходил через оптическую систему (5). Точная настройка оптической системы достигалась минимизацией расходимости выходного из компрессора пучка путем варьирования расстояния между линзами: при фокусных расстояниях линз f1 =-12см, f2 =100см и расстоянии между линзами t=88см обеспечивался выигрыш в базе решеточного компрессора К≈850 [10]. С помощью зеркала (7) излучение выволилось из ДЛЗ. Зеркало (8) направляло излучение через вводной микрообъектив (9) в ОВС (10). В ОВС обеспечивались значения плотности мощности P=8 · 107 Вт/см². Вариациями расстояния между выводным микрообъективом (11) и ОВС (10) достигалась минимальная расходимость пучка. При удлинении импульсов от то =35 до т=130пс значения ширины спектральных линий на входе в систему и на выходе из нее, определенные описанным составляли соответственно $\Delta\lambda_0 = 0.21 \text{\AA}$ выше образом, Δλ=0.09 Å.

На рис.2 представлены расчетные кривые, служащие для оптимизации спектрального компрессора: значения максимальной степени сжатия S (а) и оптимальной интенсивности излучения в OBC I (б) в зависимости от задержки ДЛЗ Δ T, а также кривая зависимости S(I) (в) представлены в отличие от [3] в размерных переменных. На кривых, для сравнения результатов

249

экспериментальных и теоретических исследований, указаны измеренные значения величин (знак о).

Рис.2. Оптимизационные кривые спектрального компрессора: а) максимальная степень сжатия S в зависимости от величины задержки ДЛЗ ΔТ, в единицах пс;

б) оптимальная интенсивность излучения в ОВС I, в единицах ГВт/см², в зависимости от задержки ДЛЗ ∆Т;

в) максимальная степень сжатия S в зависимости от оптимальной интенсивности излучения в ОВС.

На кривых знаком о показаны измеренные значения величин.

Отметим, что созданный и апробированный спектральный компрессор может использоваться для исследований процессов как контроля за параметрами лазерных СКИ, так и их стабилизации.

THE REPORT IN AN ANTICE

statistic fill 10

ЛИТЕРАТУРА

1. С. А. Ахманов, В. А. Выслоух, Ф. С. Чиркин. Оптика фемтосекундных лазерных импульсов. М., Наука, 1988.

- L. Kh. Mouradian, N. L. Markarian, T. A. Papazian, A. A. Ohanjan. Digest of Conference on Lasers and Electrooptics, USA, 1990.
- Н. Л. Маркарян, Л. Х. Мурадян, Т. А. Папазян. Квант. электрон., 18, 865 (1991).
- S. A. Planas, N. L. Pires Mansur, C.H.Brito Cruz, H. L. Fragnito. Opt. Lett., 18, 699 (1993).
- Т. А. Папазян, Л. Х. Мурадян, Н. Л. Маркарян, А. В. Зограбян. Изв. АН Армении, Физика, 27, 128 (1992).
- N. L. Margarian, L. Kh. Mouradian, T. A. Papazian, A. V. Zohrabian. Abstracts of 2nd International Conference on Lasers and Their. Applications. Tehran, Iran, p.99 (1993).
- L. Kh. Mouradian, N. L. Markarian, T. A. Papazian. Digest of International Conference "Lasers'93", USA, MF7 (1993).

- 8. Н. Л. Маркарян, Л. Х. Мурадян, Т. А. Папазян, А.В.Зограбян. Изв. АН Армении, Физика, 29, 127(1994).
- M. T. Kauffman, W. C. Banyai, A. A. Godil, D. M. Bloom. Appl. Phys. Lett., 64(3), 270 (1994).
- 10. А. В. Зограбян, Л. Х. Мурадян, Т. А. Папазян. Письма в ЖТФ, 20, вып.7, 71 (1994).
- A. M. Johnson, R. H. Stolen, W. M. Simpson. Appl. Phys. Lett., 44(8), 729 (1984).

SPECTRAL COMPRESSOR OF PICOSECOND PULSES

A. V. ZOHRABIAN, N. L. MARGARIAN, L. KH. MOURADIAN, T. A. PAPAZIAN

The spectral compressor of picosecond laser pulses based on the dispersive delay line and single-mode optical fiber is designed and tested. The results of the first experimental realization of spectral compression process are presented.

. .