Известия НАН Армении, Физика, т. 28, № 4-6, с. 116-120 (1993)

УДК 535.341

К ТЕОРИИ ТЕМПЕРАТУРНОГО СДВИГА СПЕКТРАЛЬНЫХ ЛИНИЙ ПРИМЕСНЫХ ДИЭЛЕКТРИЧЕСКИХ КРИСТАЛЛОВ

Ф. П. САФАРЯН

Армянский педагогический институт им. Х. Абовяна

(Поступила в редакцию 14 июля 1993 г.)

Предлагается схема количественных вычислений температурных сдвигов спектральных линий, дополняющая ранее предложенную автором схему расчета уширений бесфононных линий. Рассчитаны температурные сдвиги линий Б и В в полосе люминесценции 4F3/2→4/11/2B кристалле ИАГ—Nd³⁺ и получено хорошее созпадение с экспериментальными длиными в широком диапазоне температур (100 К—500 К).

1. Введение

В [1,2] предложен способ вычисления температурных уширечий бесфононных линий (БФЛ) примесных лазерных кристаллов. Расчеты проводились на основе детального вычисления матричных элементов электрон-фононного гамильтониана (ЭФГ), учитывающего кулоновское взаимодействие оптического электрона примеси с близкорасположенными ионами решетки. В пастоящей работе на основе того же ЭФГ вычисляются температурные сдвиги БФЛ. Конкретные вычисления проводятся для температурных сдвигов тех же двух линий Б и В в полосе люминесценции ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ примесного иона Nd^{3+} в иттрий-алюминиевом гранате ($HA\Gamma - Nd^{3+}$), ширина которых вычислена в [1,2].

Поскольку два штарковских состояния возбужденного уровня ${}^{4}F_{3/2}$ (от которых начинаются соответствующие рассматриваемым линиям электронные переходы) уширяются и сдвигаются за счет одних и тех же фононных переходов, происходящих между ними, то справедливость теоретических вычислений требует совпадения вычисленных и экспериментальных данных как для уширения, так и для сдвига при одних и тех же значениях параметров T_D (температура Дебая) и Z (эффективный заряд ионов первой координационной сферы примесного иона).

2. Температурный сдвиг бесфононной линии

Температурный сдвиг БФЛ ($\Delta s_{\lambda'\lambda}$) зависит от смещений уровней λ' и λ , между которыми происходит электронный переход

$$\Delta \varepsilon_{\lambda'\lambda} = \Delta \varepsilon_{\lambda'} - \Delta \varepsilon_{\lambda}. \tag{1}$$

Выражение для смещения электронного уровня можно представить в виде [3]¹:

¹ Интер реренционные члены, зависящие от <\/V(1)|↓><µ|V(1)|↓><</V(1)|↓> здесь не учтены, так как после дальнейшего усреднения по направлениям акустооптических воли их вклад обращается в нуль. 116

$$\Delta s_{\lambda}(T) = \Delta s_{\lambda}^{(1)} + \Delta s_{\lambda}^{(2)}(1) + \Delta s_{\lambda}^{(2)}(2), \qquad (2)$$

где

$$\Delta \boldsymbol{\varepsilon}_{\lambda}^{(1)} = \frac{1}{2Mv_0^2} \sum_{\boldsymbol{\alpha}\nu} |\langle \lambda | V^{(1)} | \nu \rangle |^{\boldsymbol{9}} \boldsymbol{\omega}_{\boldsymbol{\alpha}} \boldsymbol{v}_{\boldsymbol{\alpha}} \times \left(\frac{1}{\Delta_{\lambda\nu} - \boldsymbol{\omega}_{\boldsymbol{\alpha}}} + \frac{1}{\Delta_{\lambda\nu} + \boldsymbol{\omega}_{\boldsymbol{\alpha}}} \right). \tag{3}$$

есть однофононный вклад в температурном смещении уровня. возникающий за счет обмена одним фонопом между электронной и фопонной подсистемами. Двухфонный вклад, являющийся результатом обмена двух фононов решетки, в формуле (2) представлен в виде двух членов $\Delta \varepsilon_{\lambda}^{(2)}(1)$ и $\Delta \varepsilon_{\lambda}^{(4)}(2)$, зависящих от матричных элементов ЭФГ первого и второго порядка соответственно. Они имеют вид:

$$\Delta \varepsilon_{\lambda}^{(2)}(1) = \frac{1}{h^3} \left(\frac{h}{2Mv_0^2} \right)^2 \sum_{\alpha\beta} \sum_{\mu\nu} |\langle \lambda | V^{(1)} | \mu \rangle \langle \mu | V^{(1)} | \nu \rangle |^2 \omega_{\alpha} \omega_{\beta} \times \\ \times \left\{ \frac{\upsilon_{\alpha} + \upsilon_{\beta} + \upsilon_{\alpha} \upsilon_{\beta}}{\Delta_{\lambda\nu} - \omega_{\alpha} - \omega_{\beta}} \left(\frac{1}{\Delta_{\lambda\mu} - \omega_{\alpha}} + \frac{1}{\Delta_{\lambda\mu} - \omega_{\beta}} \right)^2 + \frac{\upsilon_{\alpha} \upsilon_{\beta}}{\Delta_{\lambda\nu} + \omega_{\alpha} + \omega_{\beta}} \times \\ \times \left(\frac{1}{\Delta_{\lambda\mu} + \omega_{\alpha}} + \frac{1}{\Delta_{\lambda\mu} + \omega_{\beta}} \right)^2 + 2 \frac{\upsilon_{\beta}(1 + \upsilon_{\alpha})}{\Delta_{\lambda\nu} - \omega_{\alpha} + \omega_{\beta}} \left(\frac{1}{\Delta_{\lambda\mu} - \omega_{\alpha}} + \frac{1}{\Delta_{\lambda\mu} + \omega_{\beta}} \right)^2 \right\}.$$
(4)
$$\Delta \varepsilon_{\lambda}^{(2)}(2) = \frac{1}{h} \left(\frac{h}{2Mv_0^2} \right) \sum_{\alpha\beta} \sum_{\nu} |\langle \lambda | \upsilon^{(2)} | \mu \rangle |^2 \omega_{\alpha} \omega_{\beta} \times$$

$$\times \left\{ \frac{v_{\alpha} + v_{\beta} + v_{\alpha}v_{\beta}}{\Delta_{\lambda\nu} - \omega_{\alpha} - \omega_{\beta}} + \frac{v_{\alpha}v_{\beta}}{\Delta_{\lambda\nu} + \omega_{\alpha} + \omega_{\beta}} + 2 \frac{v_{\beta}(1 + v_{\alpha})}{\Delta_{\lambda\nu} - \omega_{\alpha} + \omega_{\beta}} \right\}.$$
(5)

В формулах (3)-(5) введены следующие обозначения¹: $\Delta_{\lambda y} = \frac{1}{\hbar} (\varepsilon_{\lambda} - \varepsilon_{y})$ (где ε_{λ} -собственное значение энергии электрона в состоянии λ), $\hbar \omega_{\alpha}$ -энергия фонона типа α (α заменяет два индекса (x, s) (где x-волновой вектор акустических волн решетки, s-ветвь колебаний), $\upsilon_{\alpha} = \left[\exp\left(\frac{\hbar \omega_{\alpha}}{kT}\right) - 1 \right]^{-1}$; М-масса кристалла; υ_{0} -средняя скорость акустических волн в кристалле; $\langle \lambda | V^{(n)} | \mu \rangle$ -матричные элементы операторов *n*-ого ранга $V^{(n)}$ в разложении потенциала ЭФ взанмодействия по нормальным колебаниям решетки.

Дальнейшее преобразование формул (3) \div (5) связано с применением приближения Дебая для колебаний решетки, которое позволяет в формулах (3) \div (5) от сумм по фононным состояниям α перейти к соответствующим интегралам посредством $\sum_{\alpha} \ldots \rightarrow V/2\pi^2 v_0^3$. $\int \ldots \omega^2 d\omega$, где V-объем кристалла, ω_D -частота Дебая кристалла.

¹ Соответствующие этим сдвигам ширины получаются из формул (3)—(5) заменой дроби типа <u>1</u> функцией δ(Δ-ω) [1]. Из структуры формул (3) ÷ (5) видно, что вычисление полученных таким образом интегралов представляет определенную трудность. Однако, исходя из особенностей энергетического спектра рассматриваемого вещества, их приближенно можно свести к известным интегралам типа $I_n(a,b) = \int_{-\infty}^{b} dx \frac{x^n}{e^n-1}$.

3. Расчет температурных сдвигов линий E и B в полосе ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ люминесценции $MA\Gamma - Nd^{3+}$

Расположение штарковских состояний уровной ИАГ— Nd^{3+} приведено на рисунке: Нижний уровень $i_1({}^4/{}_{11/2})$, на котором кончаются рассматриваемые переходы с уровней $j_1({}^4F_{3/2})$ и $j_2({}^4F_{3/2})$, сдвигается за

Расположение штарковских состояний уровней 4/11/2, 4/3/2 и 4/5/2; (а)--- в кубическом поле лигандов, (б)--- в реальном кристаллическом поле граната.

счет внутримультиплетных фононных переходов, происходящих между штарковскими состояниями уровня ${}^{4}J_{11/2}$. Состояния j_1 , j_2 могут сдвигаться как за счет внутримультиплетных переходов, происходящих между ними, так и за счет межмультиплетных переходов на штарковские состояния уровня ${}^{4}F_{5/2}$. Остальные уровни расположены далеко (больше, чем $3\omega_D$) от рассматриваемых уровней j_1 , j_2 и i_1 не могут существенно влиять на их положение.

Волновые функции штарковских состояний уровней ${}^{4}F_{3/2}$, ${}^{4}F_{5/2}$ н ${}^{4}I_{11/2}$, на базе которых вычисляются входящие в (3)÷(5) матричные

элементы типа () V(n) . выражаются в виде линейной суперпозиции по базисным функциям (<SJM>=M> свободного нона Nd3+ 14, 51, Коэрфициенты ЭФГ V⁽ⁿ⁾ для систем типа гранатов, активированных T R³⁺ ионами, приведены в [1, 6]. Они представлены в виде разложения по сферическим гармоникам r¹Y_{im}(θ, φ) оптического электрона примеси. Таким образом, вычисление матричных элементов, входящих в (3) + (5), сводится к вычислению матричных элементов неприводимых тензорных операторов $T_{lm} = \sum r_i^l Y_{lm}(\theta_i \varphi_l)$ на волновых функциях

свободного иона Nd3+. Последние вычисляются в рамках генеалогической схемы Рака [7, 8].

Результаты вычислений сдвигов (в см-1) в температурном интервале 100 К-500 К приведены в таблице. В 1-й и 2-й строках таблицы привелены величины одно- и двухфононных вкладов в смещение уровня i,(4/11/2). Вклад. Да(2) (2) в смещение этого уровня оказался ничтожным. В следующих трех строках приведены величины как внутримультиплетных, так и межмультиплетных одно- и двухфононных сдвигов уровня /, (4F3/2). Соответствующие сдвиги для уровня i.(4F3/2) приведены в последующих трех строках.

	and the second second second								. a o minga	
Ne	ТК	100	150	200	250	300	350	400	450	500
1	$\Delta \varepsilon_{i}^{(1)} Z^{-2}$	0.01	0,17	0,36	0,60	0,82	1,05	1,30	1,58	1,9
2	$\Delta \varepsilon_{L_1}^{(2)}(1)Z^{-4}$	0,06	-0,26	0,47	-0,73	-0,94	-1.3	-1,7	2,1	2,5
3	$\Delta \varepsilon_{1}^{(1)}Z^{-2}$	0,05	0.06	0,04	0,02	-0,02	-0,16	-0,1	0,5	0,8
4	$\Delta \epsilon_{I}^{(2)}(1) Z^{-4}$	-0,3	-0,8	-1,54	-2,34	-3,43	-4,51	-7,4	-8,9	-11,0
5	$\Delta \varepsilon_{i}^{(2)}(2) Z^{-2}$	-0,01	-0,05	-0,1	-0,2	-0,29	-0,42	-0,6	-0,7	-0,9
6	$\Delta \varepsilon_{I}^{(1)} Z^{-2}$	-0,06	-0,28	-0.58	1,03	-1,5	-2,08	-2.69	-3,2	-4,0
7	$\Delta \epsilon_{I}^{(2)}(1)Z^{-4}$	0,18	-0,37	-0,62	-0,88	-1,26	-1,57	-1,9	-2,2	-2,5
8	$\Delta \epsilon_{2}^{(2)}(2)Z^{-2}$	-0,(1	0,05	-0,11	-0,19	-0,28	- 0,40	-0,6	-0,7	-0,9
9	Δε, ,	-0.34	-1,1	-2,25	-3,64	-5,34	-7,2	-9,7	-11,4	-14
10	Δε эксп.	0,4	-1,0	-2,2	-3,7	-5,4	-7,3	-9,4	-11,5	-
11	Δε	-0,44	-1,2	2,4	4,11	-5,9	-7,7	-9,6	-11,1	13
12	Δε /2" ЭКСП.	-0,5	-1,3	-2,5	-4,0	-5,5	-7,3	-9,4	-11,3	-
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				

Величины температурных сдвигов спектральных линий Б и В при Z = 1,124 а. е. приведены в 9-й и 11-й строках таблицы. В 10-й и 12-й строках приведены их экспериментальные значения, взятые из [9]. Налицо хорошее совпидение с экспериментом (масштаб графика в [9], с которого взяты экспериментальные данные, равен 0,5 см-1/мм). Такое совпадение нельзя считать случайным, поскольку подобные 119

Таблина

вычисления с использованием того же гамильтониана привели к хорошему совпадению с экспериментом также для температурного уширения рассматриваемых в данной работе линий *Б* и *В*. Причем совпадение получилось почти при одних и тех же значениях параметров теории (T_L =750 K и Z=1,1 а.е.). Голее того, неплохое совпадение получилось также для ширин линий в полосе люминеспенции ${}^{4}F_{3/2} \rightarrow$ $\rightarrow {}^{4}F_{3/2}$ [2] и для вероятностей безызлучательных переходов в полосах ${}^{4}F_{5/2} \rightarrow {}^{4}F_{3/2}$, ${}^{4}I_{11/2} \rightarrow {}^{4}I_{9/2}$ нома Nd^{3+} в ИАГ [5].

ЛИТЕРАТУРА

- 1. Ф. П. Сафарян. ФТТ, 19, 1947 (1977).
- 2. ф. П. Сафарян. ФТТ, 20, 1563 (1978).
- 3. Ф. П. Сафарян. Изв. АН Арм. ССР. Физика, 14, 245 (1979).
- 4. И. С. Андриеш, В. Я. Гамурарь, Д. Н. Вылгежанин, А. А. Каминский, С. И. Клокишер, Ю. Е. Перлин. Квантовая электроника. 2, 287 (1975).
- 5. Ф. П. Сафарян. ФТТ, 21, 300 (1979).
- 6. Г. Г. Демирханян, Ф. П. Сафарян. Уч. записки ЕрГУ, Физика, № 2, 61 (1981).
- С. А. Альтшулер, Б. М. Козырев. ЭПР соединений элементов промежуточных групп. М., Наука, 1972.
- 8. И. С. Андриеш, В. Я. Гамурарь, Д. Н. Вылегжанин, А. А. Каминский, С. И. Клокишнер, Ю. Е. Перлин. ФТТ, 14, 2967 (1972).
- 9. T. Kushida. Phys. Rev., 185, 500 (1969).

₩ԱՌՆՈՒՐԴԱՅԻՆ ԴԻԼԼԵԿՏՐԻԿ ԲՅՈՒՐԵՂՆԵՐԻ ՍՊԵԿՏՐԱԼ ԳԾԵՐԻ ՋԵՐՄԱՍՏԻՃԱՆԱՅԻՆ ՇԵՂՈՒՄՆԵՐԻ ՏԵՍՈՒԹՅԱՆ ՄԱՍԻՆ

3. 9. UUSUPSUL

Ստացված հն բանաձևեր, որոնք վույլ են տալիս իրականացնել խառնուրդային բյուրեղ. ների սպեկտրալ գծերի շեղումների քանակական հաշվարկը և միաժամանակ լրացնում են հեղինակի կողմից ավելի վաղ առաջարկված սպեկտրալ դծերի լայնացումների հաշվարկի սխեման։ Կատարված է YAG-Nd3+ բյուրնդի 4F3/2→4/11/2 դծի շեղման Թվային հաշվումը ջերմաստիճանային լայն տիրույթում (100 Կ-500 Կ), որի արդյունջում ստացվել է լավ համընկնում փորձաբարական տվյալների հե-:

ON THE THEORY FOR TEMPERATURE SHIFTS OF SPECTRAL LINES OF DOPED DIELECTRIC CRYSTALS

F. P. SAFARYAN

The calculation methods for spectral line widths, proposed in [1, 2], are used to calculate the temperature shifts of the corresponding spectral lines. In particular, the calculations for the shifts of two lines in the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ luminescence band of the crystal YAG: Nd^{3+} are in good agreement with the experimental data in large temperature range (100 K \div 500 K).