УДК 621.039.6

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ЭФФЕКТИВНЫХ ПОТЕНЦИАЛОВ КАНАЛИРОВАНИЯ В ИОННЫХ КРИСТАЛЛАХ

Н. Н. КОРХМАЗЯН, Г. Г. МЕЛИКЯН

Армянский педагогический институт им. Х. Абовяна

(Поступила в редакцию 10 мая 1993 г.)

Разработан метод вычисления эффективных потенциалов каналирования релятивистских заряженных частиц в ионных кристаллах, учитывающий вклад всех нонов в формирование поля. Вычислены эффективные потенциалы плоскостного и осевого каналирования для объемноцентрированных и гранецентрированных кристаллов.

ВВЕДЕНИЕ

Исследование процесса каналирования релятивистских заряженных частиц в кристаллах имеет большое научное и практическое значение. В настоящее время каналирование частиц в кристаллах является одним из эффективных механизмов получения рентгеновского и у-излучения [1]. Кроме того, в последние годы в ряде экспериментальных и теоретических работ (см. [2] и приведенную там литературу) была показана возможность использования излучения при каналировании для диагностики свойств кристаллов. Измерение излучения при каналировании релятивистских частиц в монокристаллах может стать новым инструментом для определения дефектов, примесей, кристаллических потенциалов и других характеристик простых и сложных структур.

Теория каналирования релятивистских заряженных частиц в кристаллах интенсивно развивалась после первой теоретической работы Кумахова [3], где для исследования проблемы предлагался метод усреднения по Линдхарду [4] модельных потенциалов для изолированных атомов. В настоящее время имеется ряд обзоров [5] и монографий [1, 6], посвященных этому явлению. Однако во всех этих работах процесс каналирования рассмотрен в основном в кристаллах с ковалентной связью. Используемые в этих работах быстроубывающие потенциалы электронейтральных атомов не применимы для вычисления эффективных потенциалов каналирования ионных кристаллов. Существенной особенностью ионных кристаллов является то, что в них существуют дальнодействующие силы, порожденные отдельными заряженными кристаллическими осями и плоскостями, и при формировании эффективного потенциала в любом канале необходимо учитывать вклад от всех нонов кристалла. Это обстоятельство существенно влияет на форму и величину эффективных потенциалов и достаточно усложняет их расчеты.

Целью настоящей работы является разработка метода вычисления эффективных потепциалов плоскостного и осевого каналирования частиц в нонных кристаллах. Для этого в рамках линеаризованного уравнения самосогласованного поля исследуется структура электростатических полей в ионных кристаллах, решается уравнение Пуассона для скалярного потенциала кристалла и полученное решение усредняется по фононному спектру кристалла. С целью нахождения эффективных потепциалов осевого и плоскостного каналирования проводится также усреднение полученого трехмерного потенциала по элементарной ячейке кристаллической оси и плоскости. Рассчитаны эффективные потенциалы плоскостного п осевого каналирования для объемпоцентрированных (типа *CsCl*) и гранецентрированных (типа *KCl*) кристаллов.

1. Решение уравнения Пуассона для ионного кристалла типа CsCl

Для вычисления электростатического поля ионного кристалла типа CsCl воспользуемся приближением Иенсена-Майера-Гослера [7], суть которого состоит в том, что в решетке положительные и отрицательные ионы упакованы, как шары, соответственно с эффективными радиусами R_{0+} и R_{0-} . Набор шаров двух типов ионов образует две подобные подрешетки с кубической симметрией. Ионы Cl^- расположены в вершинах кубической решетки, в центре которой находится нон Cs^+ . Совершенио аналогично можио выделить ячейку, где каждый ион хлора окружен восемью ионами цезия. Совместив начало координат с центром иона Cs^+ , напишем уравнение Пуассона для потенциала положительной подрешетки

$$\Delta \varphi^{+}(\vec{r}) = -4\pi \sum_{\vec{l}_{+}} p_{0}^{+}(\vec{r} - \vec{l}_{+}), \qquad (1.1)$$

где $p_0^+(r-l_+)$ -плотность заряда в точке r от иона с центром в узле

 l_+ при температуре кристалла $T=0^\circ C$. Решение уравнения (1.1) можно представить в виде [8]

$$p^{+}(\vec{r}) = -4\pi \int G_{+}(\vec{r}-\vec{r}')p_{0}^{+}(\vec{r}')d\vec{r}',$$
 (1.2)

где функция Грина удовлетворяет уравнению

$$\Delta G_{+}(\vec{r} - \vec{r'}) = \sum_{\vec{l}_{+}} \delta(\vec{r} - \vec{r'} - \vec{l}). \tag{1.3}$$

Решение этого уравнения имеет вид

$$G_{+}(\vec{r}-\vec{r}') = -\frac{1}{d^{2}} \sum_{k\neq 0} \frac{1}{k^{2}} e^{i\vec{k}(\vec{r}-\vec{r}')}, \qquad (1.4)$$

где k — вектор обратной решетки

$$\vec{k} = \frac{2\pi}{d} (l \vec{x}_0 + n \vec{y}_0 + m \vec{z}_0), \qquad (1.5)$$

57.

d—постоянная решетки, а (*l*, *n*, *m*)--целые числа. Подставляя (1.4) в (1.2), получаем

$$e^{+}(\vec{r}) = \frac{4\pi}{d^{3}} \sum_{\vec{k}=0}^{\infty} \frac{1}{k^{3}} e^{i\vec{k}\cdot\vec{r}} \int e^{-i\vec{k}\cdot\vec{r}\cdot} p_{0}^{+}(\vec{r}\,')d\vec{r}\,'.$$
(16)

Если начало координат совместить с центром ближайшего иона хлора, например, в точке $\vec{a} = \begin{bmatrix} d \\ 2 \end{bmatrix} (\vec{x}_0 + \vec{y}_0 + \vec{z}_0)$, где (x_0, y_0, z_0) —орты координатных осей, то потенциал отрицательной подрешетки получится из (1.6) с помощью замены $\rho_0^+ \rightarrow \rho_0^-$. Переход к исходной системе координат осуществляется заменой $\vec{r} \rightarrow \vec{r} - \vec{a}$, что дает

$$\varphi^{-}(\vec{r}) - \frac{4\pi}{d^{3}} \sum_{\vec{k}\neq 0} \frac{(-1)^{m+n+1}}{k^{2}} e^{i\vec{k}\cdot\vec{r}} \int e^{-i\vec{k}\cdot\vec{r}} \rho_{0}(\vec{r}') d\vec{r}'.$$
(1.7)

Потенциал всего кристалла получается суммированием выражений (1.6) и (1.7).

2. Усреднение потенциала по фононному спектру кристалла

Пусть центр положительного иона вследствие тепловых колебаний сместился в окрестность $d\vec{R_T}$ точки $\vec{R_T}$. Вероятность этого смещения обозначим через $P(\vec{R_T})d\vec{R_T}$. Заметим, что плотность заряда в точке $\vec{r'}$ от смещенного иона равняется плотности заряда от того же иона в точке $\vec{R} - \vec{r'} - \vec{R_T}$ до ее смещения. Тогда, усредняя по тепловым колебаниям выражения (1.6) и (1.7), для потенциала кристалла получаем

$$\varphi_{T}(\vec{r}) = \frac{4\pi}{d^{a}} \sum_{\vec{k}\neq 0} \frac{1}{k^{a}} e^{\vec{i}k\vec{r}} \int e^{-i\vec{k}\vec{R}} \left[p_{0}^{+}(\vec{R}) + (-1)^{m+n+l} p_{0}^{-}(\vec{R}) \right] d\vec{R} \int e^{-i\vec{k}\vec{R}} P(\vec{R}_{T}) d\vec{R}_{T}$$
(2.1)

Для относительно низких температур кристалла, когда амплитуды колебаний ионов малы по отношению к постоянной решетки d, можно в качестве функции распределения $P(\vec{R_T})$ использовать гармоническое изотропное представление

$$P(\vec{R}_{T}) = \frac{1}{(2\pi)^{s/s} u} \exp\left(-\frac{R_{T}^{2}}{2u^{s}}\right), \qquad (2.2)$$

где и^в — среднее значение квадрата амплитуды тепловых колебаний нонов обоих типов. Подставляя (2.2) в (2.1), для электростатического потенциала кристалла с учетом влияния фононного спектра окончательно получим

$$\varphi_T(\vec{r}) = \frac{4\pi}{d^3} \sum_{\vec{k} \neq 0} \frac{1}{k^3} e^{-\frac{k^3 u^3}{2} + ikr} [W^+ + (-1)^{m+n+1} W^-], \qquad (2.3)$$

где

58

$$W^{\pm} = \int \rho_0^{\pm}(\vec{R}) e^{-i\vec{k}\vec{R}} d\vec{R} . \qquad (2.4)$$

3. Усреднение потенциала по элементарной ячейке кристалла в режиме плоскостного каналирования

Пусть быстрая заряженная частица движется под малым углом по отношению к какой-либо главной кристаллической плоскости (x, y) и под большим углом по отношению к главным кристаллическим осям, находящимся в этой плоскости. Тогда потенциал взаимодействия частицы с кристаллом можно усреднить в плоскости (x, y). Ввиду периодичности функции (2.3) на этой плоскости, се среднее значение находится по формуле

$$\overline{\varphi_{T}(z)} = \frac{1}{d^{2}} \int_{0}^{d} dx \int_{0}^{d} \varphi_{T}(x, y, z) dy.$$
(3.1)

Ниже, ввиду полной аналогии между подрешетками, вычисления проводятся только для положительной подрешетки.

Предположим, что частица движется в плоскости, параллельной илоскости (x, y), расположенной от нее на расстоянии $z(z \leq R_{0}+)$. Тогда элементарная ячейка разделяется на две существенно различные области S_1 и S_2 (рис. 1). В области S_2 частица движется внутри иона, и поэтому в потенциале взаимодействия должен фигурировать структурный фактор иона W^+ . Если распределение заряда внутри иона имеет сферическую симметрию, то решение (2.3) существенно упрощается

Рис. 1. В области S₁ частица движется вне структуры иона, S₂—область пересечения частицы со структурой иона.

в области, не пересекающейся с ноном. Лля таких областей ионы можно считать точечными и распределение заряда задавать в виде $p_{\vec{c}}^{\pm}(\vec{R}) = \pm e^{\delta}(\vec{R})$, где e = |e|, после чего из (2.3) получим

$$\varphi_{\text{BH-CT.}}(\vec{r}) = \frac{4\pi e}{d^3} \sum_{\vec{k} \neq 0} \frac{1}{k^3} e^{ikr - \frac{k^2 m^2}{2}} [1 - (-1)^{m+n+1}].$$
(3.2)

С учетом сказанного формулу (3.1) удобно представить в виде

$$\overline{\varphi_T^+}(z) = \frac{1}{d^{\mathbf{s}}} \left\{ \int_{S_{\mathbf{s}}} \left[\varphi_T^+(\vec{r}) - \varphi_{\mathrm{BH, cr.}}^+(\vec{r}) \right] dx dy + \int_{S_1 \cup S_2} \varphi_{\mathrm{BH, cr.}}^+(\vec{r}) dx dy \right\}.$$
(3.3)

Поскольку ионы обладают сферической симметрией, то область Sa будет представлять из себя круг с радиусом $R(z) = \operatorname{Ret} \overline{R_{0+}^2 - z^2}$. Переходя теперь в первом интеграле формулы (3.3) к имлиндрическим координатам и производя интегрирование, получим

$$\overline{\varphi_{\tau}^{\pm}}(z) = \frac{1}{\pi d^{\mathbf{u}}} \sum_{\mu \neq 0} \frac{R^{+}(z)}{\mu^{\mathbf{u}_{\gamma}}} J_{1}\left(\frac{2\pi}{d} \sqrt{R^{+}}(z)\right) [W^{+} - e] \exp\left(i\frac{2\pi}{d}mz - \mu^{\mathbf{u}_{\lambda}\mathbf{u}}\right) + \frac{2e}{\pi d} \sum_{m=1}^{\infty} \frac{1}{m^{\mathbf{u}}} \cos\left(\frac{2\pi}{d}mz\right) \exp(-m^{\mathbf{u}_{\lambda}\mathbf{u}}), \qquad (3.4)$$

где

$$\mu^{a} - m^{a} + n^{a} + l^{a}, \quad \nu = \sqrt{n^{a} + l^{a}}, \quad \lambda = \sqrt{2u/d}.$$
(3.5)

Потенциал $\overline{\varphi_{T}(z)}$ для той же плоскости получится из (3.4) заменой $e \rightarrow -e, W^{+} \rightarrow W^{-}, z \rightarrow z - \frac{d}{2}$.

Окончательно для усредненного потенциала всего кристалла находим

$$\overline{\varphi_{T}(z)} = \frac{1}{\pi d^{2}} \sum_{\mu \neq 0} \frac{1}{\mu^{2} \sqrt{2\pi}} \left\{ R^{+}(z) J_{1} \left[\frac{2\pi}{d} \sqrt{2\pi} R^{+}(z) \right] (W-e) + \left(-1 \right)^{m} R^{-} \left(z - \frac{d}{2} \right) J_{1} \left[\frac{2\pi}{d} \sqrt{2\pi} R^{-} \left(z - \frac{d}{2} \right) \right] (W^{-}+e) \right\} \exp\left(\frac{2\pi i}{d} m z - \mu^{2} \lambda^{2} \right) + \left(+ \frac{4e}{\pi d} \sum_{p=1}^{\infty} \frac{1}{(2p-1)^{2}} \cos\left[\frac{2(2p-1)\pi z}{d} \right] \exp\left[-(2p-1)^{2} \lambda^{2} \right].$$
(3.6)
3gecb $R^{-}(z) = \operatorname{Re} \left[\sqrt{R_{0-}^{2} - \left(z - \frac{d}{2} \right)^{2}} \right],$

Формулой (3.6) следует пользоваться лишь для области $0 < z < \frac{d}{2}$. Из симметрии задачи следует, что плоскость $z = \frac{d}{2}$ является плоскостью симметрии для хода потенциала в канале 0 < z < d. В остальных каналах ход потенциала периодически повторяется.

4. Эффективный потенциал плоскостного каналирования в ионных кристаялах типа КСІ

Вычислим эффективный потенциал плоскостного каналирования для класса гранецентрированных ионных кристаллов типа KCl. Такой кристалл состоит из ионов двух типов, размещенных в чередующихся 60

точках простой кубической решетки таким образом, что ближайшими соседями каждого иона являются шесть нонов другого рода. В этих кристаллах основные кристаллические плоскости электронейтральны, в отличие от кристаллов типа CsCl. Однако, здесь возможно каналирование вдоль заряженных наклонных плоскостей. Для вычисления эффективных потенциалов каналирования этих плоскостей сначала рассмотрим подрешетку положительных нонов. Эту подрешетку в свою очередь можно разбить на четыре кубические подрешетки. Если начало координат совместить с одной из вершин первой подрешетки, то вторая будет смещена на величину $\frac{d}{2}$ относительно первой вдоль осей х и у, 3-я подрешетка- вдоль осей z, y, a 4-я вдоль осей z, x. Потенциал простой кубической решетки, как было показано выше, определяется первой слагаемой формулы (2.3). Для того, чтобы найти потенциал второй подрешетки относительно выбранной системы координат, в этом выражении необходимо сделать замену $x \to x - \frac{d}{2}, y \to y - \frac{d}{2},$ $z \to z - \frac{d}{2}$. Учитывая, что в этом случае $e^{ihr} \to (-1)^{n+i}e^{ihr}$ для потен-

циала второй подрешетки в той же точке получаем

$$\varphi_{11}^{+} = \frac{4\pi}{d} \sum_{\vec{k} \neq 0} \frac{(-1)^{n+1}}{k^2} e^{\vec{i} \vec{k} \cdot - \frac{k^2 a^3}{2}} W^+.$$
(4.1)

Аналогично определяются потенциалы остальных подрешеток. Согласно принципу суперпозиции полей для потенциала положительной подрешетки кристалла получаем

$$\varphi_T^+(\vec{r}) = \frac{4\pi}{d^3} \sum_{\vec{k} \neq 0} \frac{1}{k^2} e^{i\vec{k}\cdot -\frac{k^* u^2}{2}} \left[1 + (-1)^{n+l} + (-1)^{n+m} + (-1)^{m+l}\right] W^+.$$
(4.2)

Для того, чтобы найти усредненный потенциал каналирования вдоль положительно заряженной плоскости, необходимо новую систему координат (x', y', z') выбрать так, чтобы ось z' была перпендикулярна этой плоскости, и усреднить выражение (4.2) вдоль плоскости (x', y'). Переход к новой системе координат можно осуществить с помощью двух поворотов старой координатной системы: вращением системы вокруг оси z на угол $\varphi = \frac{\pi}{4}$ с последующим вращением полученной системы вокруг оси x' на угол $\mathfrak{e}(\mathfrak{tga} = \sqrt{2})$ таким образом, чтобы ось x' лежала на положительно заряженной плоскости (рис. 2). Учитывая некоторые простые геометрические соотношения в элементарной ячейке кристалла KCl (рис. 2), после несложных преобразований получаем

$$e^{ikr} = e^{ik_0r'}, r' = (x', y', z')$$

$$\vec{k}_{0} = \left\{ \frac{\pi \sqrt{2}}{d} (n+l), \frac{2\pi}{d\sqrt{6}} (2m+n-l), \frac{2\pi}{d\sqrt{3}} (m-n+l) \right\}.$$
(4.3)

Таким образом, в новой системе координат, связанной с заряженной плоскостью кристалла, потенциал положительной подрешетки будет иметь вид

$$\varphi_{T}^{+}(\vec{r}') = \frac{4\pi}{d^{3}} \sum_{\vec{k}=0}^{\infty} \frac{1}{k^{3}} e^{i\vec{h}_{s}\vec{r}'} - \frac{k^{2}u^{2}}{2} \left[1 + (-1)^{n+1} + (-1)^{m+1} + (-1)^{m+n}\right] W^{+}.$$
(4.4)

Рис. 2, Элементарная ячейка кристалля КСІ, •-К⁺, ·-СІ⁻.

Элементарная плоская ячейка имеет стороны $\frac{d}{\sqrt{2}}$ и $\frac{d\sqrt{6}}{4}$ соответственно вдоль осей x' и y'. Расстояние между ближайшими положительно заряженными плоскостями равно $\frac{d}{\sqrt{3}}$, между положительно и отрицательно заряженными плоскостями — $\frac{d}{2\sqrt{3}}$.

Рис. 3. Распределение положительных ионов в плоскости (x', y').

Усредним потенциал 9⁺(r) по элементарной ячейке (рис. 3):

$$\overline{\varphi_{T}^{+}(z')} = \frac{4}{\sqrt{3}d^{*}} \left[\int_{\mathcal{O}} \varphi_{T}^{+} dS + \int_{\mathcal{O}} \varphi_{\mathsf{BH,ct.}}^{+} dS - \int_{\mathcal{O}} \varphi_{\mathsf{BH,ct.}}^{+} dS \right].$$
(4.5)

После несложных вычислений получим

$$\overline{\varphi_{T}^{+}(z')} = \frac{8}{\sqrt[4]{2}\pi d} \sum_{m,n,l} \frac{e^{-2\pi i p_{l} k_{l}^{+} z}}{\mu^{3}} [1+(-1)^{n+l}+(-1)^{m+n}+(-1)^{m+l}] e^{\frac{2\pi l}{3^{l}/id}(m-n+l)z'} \times \\ \times \left\{ \frac{R^{+}(z')}{\sigma d} J_{l} \left(\frac{\pi \sqrt{6} R^{+}(z')\sigma}{3d} \right) (W^{+}-e) + + \frac{\sqrt{2} \sin \left[\frac{\pi}{2} (l+n) \right] \sin \left[\frac{\pi}{4} (2m+n-l) \right]}{\pi^{2} (l+n) (2m+n-l)} \right\},$$

$$+ \frac{\sqrt{2} \sin \left[\frac{\pi}{2} (l+n) \right] \sin \left[\frac{\pi}{4} (2m+n-l) \right]}{\pi^{2} (l+n) (2m+n-l)} \right\},$$

$$\Gamma_{Re} \sigma = [3(n+l)^{2} + (2m+n-l)^{2}]^{1/a}, \quad \xi = \frac{u}{d}.$$

Аналогично вычисляется потенциал отрицательной подрешетки в системе координат, связанной с отрицательным ионом. Для этого необходимо в (4.6) сделать замену

$$(W^+ - e) \rightarrow (W^- + e), R^+ \rightarrow R^-,$$
 (4.7)
The $R^-(z') = \operatorname{Re} \sqrt{R_{0-}^2 - (z' - \frac{d}{2})^2}.$

Для того, чтобы получить этот потенциал в исходной системе координат, связанной с положительно заряженным ионом, надо учитывать, что отрицательно заряженная плоскость смещена относительно положнтельной на отрезок $\frac{d}{2\sqrt{3}}$ вдоль оси z'. Поэтому при вычисленин $\overline{\varphi_T(z')}$, кроме (4.7), необходима замена $z' \rightarrow z' - \frac{d}{2\sqrt{3}}$. После этого для эффективного потенциала плоскостного каналирования частицы в нонном кристалле типа KCl окончательно получаем выражение:

$$\overline{\varphi_{\tau}(z')} = \frac{8}{\pi\sqrt{2}d} \sum_{m,n,l=0}^{\infty} \frac{1}{\mu^{3}} [1+(-1)^{m+l}+(-1)^{m+n}+(-1)^{m+l}] e^{-\frac{2\pi l}{ds^{1}l_{s}}(m+l-n)z'} \times \\ \times \left\{ \frac{R^{+}(z')}{\sigma d} J_{1} \left(\frac{\pi\sqrt{6}R^{+}(z')}{3\sigma d} \right) (W^{+}-e) + \right. \\ \left. + \frac{\sqrt{2}\sin\left[\frac{\pi}{2}(l-n)\right]\sin\left[\frac{\pi}{4}(2m+n-l)\right]}{\pi^{3}(l+n)(2m+e-l)} \left(1+e^{-\frac{i\pi}{3}(m-n+l)}\right) + (4.8) \\ \left. + \frac{R^{-}(z')}{\sigma d} J_{1} \left(\frac{\pi\sqrt{6}R^{-}(z')}{3\sigma d}\right) (W^{-}+e) e^{-\frac{i\pi}{3}(m-n+l)} \right\} e^{-2\pi s \xi^{2} \mu^{3}}.$$

Как и в предыдущем случае, формулой (4.8) следует пользоваться для первой половины канала $0 \ll z' \ll \frac{d}{2\sqrt{3}}$. Для построения потенциала во второй половине канала необходимо пользоваться симметрией потенциала по отношению к плоскости $z' = \frac{d}{2\sqrt{3}}$.

5. Эффективный потенциал осевого каналирования в ионном кристалле типа CsCl

Вычислим потенциал эффективного взаимодействия частицы с кристаллом в режиме осевого каналирования в ионном кристалле типа *CsCl*. Пусть быстрая заряженная частица пересекает плоскость (x, y). перпендикулярную к направлению оси [100], вдоль которой направлена ось *z*. Для нахождения эффективного потенциала осевого каналирования необходимо усреднить выражение (2.3) по направлению оси *z*. Поскольку потенциал (2.3) периодичен по *x*. *y*, *z*, то усреднение вдоль любой координаты сводится к усреднению на одном периоде, т. е. на отрезке *d* этой оси. При этом, если частица пересекает пон *Cs*+ на расстоянии $\sqrt[7]{x^2+y^3}$, то участок *d* разделяется на три части (рис. 4). В первой п третьей частях частица движется вне иона, а во второй части—внутри иона. Причем путь, который проходит частица внутри иона, имеет длину

$$R^{+}(x,y) = 2 \operatorname{Re} \sqrt{R_{0+}^{2} - (x^{2} + y^{2})} . \qquad (5.1)$$

Рис. 4. Если частица пересекает ион, то участок d разделяется на три части. В первой и третьей части частица движется вне иона, а во второй части-внутри иона.

Аналогично, если частица пересекает отрицательный ион, то соотвесствующая длина будет

$$R^{-}(x,y) = 2 \operatorname{Re} \left[\sqrt{R_{0-}^2 - \left(x - \frac{d}{2}\right)^2 - \left(y - \frac{d}{2}\right)^2} \right].$$
 (5.2)

Усредним сначала потенциал положительной подрешетки

64

$$\overline{\varphi_T^+(x,y)} = \frac{1}{d} \left\{ \int_{-d/2}^{R+/2} \varphi_{BH,CT.}^+(\vec{r}) dz + \int_{-R+/2}^{R+/2} \varphi_T^+(\vec{r}) dz + \int_{R+/2}^{|d/2} \varphi_{BH,CT.}^+(\vec{r}) dz \right\}.$$
(5.3)

Используя (2.3) и (3.2) для (5.3), после несложных вычислений получаем

$$\varphi_T^{\pm}(x,y) = \frac{8}{\pi^2 d} \sum_{m,n,l=0}^{\infty} a_m a_n a_l \frac{e^{-\lambda^2 \mu^2}}{\mu^2 m} \cos\left(\frac{2\pi}{d} lx\right) \cos\left(\frac{2\pi}{d} ny\right) \times \\ \times \sin\left(\frac{\pi}{d} mR^+(x,y)(W^+ - e) + \right.$$

$$\left. + \sum_{n,l=0}^{\infty} \frac{a_n a_l}{\gamma^2} e^{-\lambda^2 \gamma^2} \cos\left(\frac{2\pi}{d} lx\right) \cos\left(\frac{2\pi}{d} ny\right),$$
(5.4)

где $a_{j\neq 0}=1$, $a_{j=0}=\frac{1}{2}$, j=m,n,l.

Потенциал отрицательной подрешетки получим из (5.4) заменой $x \rightarrow x - d/2, y \rightarrow y - d/2, W^+ \rightarrow W^-, e \rightarrow -e.$

Таким образом, эффективный потекциал взаимодействия частицы с кристаллом в режиме осевого каналирования будет

$$\overline{\varphi_{T}(x,y)} = \frac{8}{\pi^{8}d} \sum_{m,n,l=0}^{\infty} \frac{a_{m}a_{n}a_{l}}{\mu^{2}m} \cos\left(\frac{2\pi}{d}lx\right) \cos\left(\frac{2\pi}{d}ny\right) e^{-\lambda^{5}\mu^{3}} \times \\ \times \left[\sin\left(\frac{R^{+}}{d}\pi m\right)(W^{+}-e)+(-1)^{l+n}\sin\left(\frac{R^{-}}{d}\pi m\right)(W^{-}+e)\right] + \\ + \frac{4e}{\pi d} \sum_{n,l=0}^{\infty} \frac{a_{l}a_{n}}{\nu^{3}} e^{-\lambda^{5}\nu^{3}} [1-(-1)^{l+n}] \cos\left(\frac{2\pi}{d}lx\right) \cos\left(\frac{2\pi}{d}ny\right).$$
(5.5)

6. Структурный фактор иона

Для дальнейшего исследования полученных выражений эффективных потенциалов (3.6), (4.6), (4.8) и (5.5) необходимо сначала вычислить конкретный вид формфакторов W±. Для этого целесообразно представить распределение заряда внутри иона в виде

$$\rho_0^{\pm}(\vec{R}) = (Z^{\pm\delta}(\vec{R}) - V^{\pm}(\vec{R}))e,$$
 (6.1)

где $V^{\pm}(R)$ — функция распределения плотности электронов внутри ионов кристалла, а Z^{\pm} —число протонов в точечном ядре. Подставляя (6.1) в (2.4) и проводя интегрирование, находим

$$W^{\pm} = e(Z^{\pm} - \chi^{\pm}), \tag{6.2}$$

$$t^{\pm} = \frac{4\pi}{k} \int_{0}^{\infty} V^{\pm}(R) R \sin(kR) dR$$

65

Возможное упрощение формулы (6.2) связано с выбором функции $V^{\pm}(R)$. Существуют два предельных случая, когда распределение электронов в ионе можно задавать аналитически.

Случай тяжелых ионов. Для таких ионов хорошим приближением является модель Томаса-Ферми-Дирака. В рамках этой модели распределение электронов в ионе можно задавать формулой Ленца-Иенсена [7]

$$V(R) = \frac{N}{A} \frac{e^{-x}}{x^3} (1 + cx)^3, \tag{6.3}$$

$$A = \frac{8\pi a_0^2}{\xi^* Z} P(c), \quad x = \left(\frac{R\xi}{a_0}\right)^{1/2} Z^{1/n}, \tag{6.4}$$

где N-число электронов в ноне данного сорта, a_0 -раднус Бора, а P(c)-полином вида

$$P(c) = 2 + 18c + 72c^{2} + 120c^{3}. \tag{6.5}$$

В формулах (6.3) и (6.4) с и ξ—вариационные параметры, которые определяются из условия минимизации энергии электронной системы. Численные значения этих параметров для разных ионов приведены в [7].

$$\chi = -\frac{4dN}{A\mu} \left(\frac{a_0}{\xi Z^{1/s}}\right)^2 \operatorname{Im} \{e^{-i(2\chi)^{-s}} | xD_{-1}(x) + 3cx^2 D_{-2}(x) + 6c^3 x^3 D_{-3}(x) + 6c^3 x^4 D_{-4}(x)]\}, \quad x = (-2bi)^{-1/s},$$
(6.6)

где $D_n(x)$ обозначает функцию параболического цилиндра. Выбирая соответствующие константы, с помощью выражения (6.6) можно вычислить численные значения эффективных потенциалов плоскостного и осевого каналирования в тяжелых ионных кристаллах разных структур. На рис. 5 и 6 приведены соответотвующие расчеты для

кристалла CsCl при плоскостном каналировании электронов и позитронов.

ного каналирования позитронов внутри кристалла CsCl.

Ионный кристалл LiH. Другим наиболее простым случаем, когда удается аналитически вычислить формфакторы W^{\pm} , является ионный кристалл LiH. В этом кристалле ионы Li⁺ и H⁻ представляют из себя водородоподобные атомы, плотность распределения электронов в которых задается в виде [9]

$$V^{\pm}(R) = \frac{2(Z_1^{\pm})^3}{\pi a_{\circ}^2} e^{-\frac{2Z_1^{\pm}}{a_{\circ}}R}, \quad Z_1 = Z - \frac{5}{16}.$$
(6.7)

Подставляя это выражение в (6.2) и проводя интегрирование, получаем

$$W^{\pm} = eZ^{\pm} - \frac{8\pi\omega^{\pm}a^{\pm}}{(a_{\pm}^{2} + k^{8})^{2}},$$

$$\omega^{\pm} \frac{2e(Z_{1}^{\pm})^{3}}{\pi a_{0}^{3}}, \quad \alpha^{\pm} = \frac{2Z_{1}^{\pm}}{a_{0}}.$$
(6.8)

Заключение

Таким образом, в статье разработан метод вычисления электростатического потенциала в ионных кристаллах, учитывающий вклад всех ионов в формирование поля в кристалле. С помощью усреднения по тепловым колебаниям и по элеменгарной ячейке кристалла получены общие выражения для эффективных потенциалов плоскостного и осевого каналирования объемноцентрированных и гранецентрированных ионных кристаллов. Для сравнательно тяжелых и легких ионных кристаллов вычислены входящие в общие выражения структурные факторы ионов. Для кристалла *CsCl* проведены численные расчеты и приведены соответствующие графики эффективных потенциалов в плоскостном канале для электронов и позитронов.

ЛИТЕРАТУРА

- М. А. Кумахов. Излучение каналированных частиц в кристаллах. М., Энергоатомиздат, 1986.
- 2. В. М. Искандарян и др. Письма в ЖТФ, 17, 83 (1991).
- 3. М. А. Кумахов. ЖЭТФ, 72, 83 (1977).
- 4. И. Линдхард. УФН, 95, 14 (1969).
- 5. И. П. Калашников, М. М. Стриханов. Квантовая электроника, 8, 2293 (1981).
- В. А. Базылев, Н. К. Жеваго. Излучение быстрых частиц в веществе во внешних полях. М., Наука, 1987.
- 7. П. Гамбош. Статистическая теория атома и ее применения. М., ИЛ, 1951.
- 8. А. С. Геворкян и др. ЖТФ, 59, 297 (1989).
- Г. Бете, Э. Солпитер. Квантовая механика с одним и двумя электронами. М., Физматгиз, 1960.

THE THEORETICAL INVESTIGATION OF EFFECTIVE POTENTIALS OF CHANNELING IN IONIC CRYSTALS

N. N. CORKHMAZIAN, G. G. MELIKIAN

The theory of channeling for relativistic particles in ionic crystals is developed. The effective potentials of plane and axial channeling in volume-centered and side-centered crystals are obtained.

ԻՈՆԱՑԻՆ ԲՅՈՒՐԵՂՆԵՐՈՒՄ ԽՈՒՂԱԿԱՎՈՐՄԱՆ ԷՖԵԿՏԻՎ ՊՈՏԵՆՑԻԱԼՆԵՐԻ ՏԵՍԱԿԱՆ ՀԵՏԱԶՈՏՈՒՄԸ

Ն. Ն. ՂՈՐԽՄԱՉՑԱՆ, Գ. Գ. ՄԵԼԻՔՑԱՆ

Մշակված է իոնային բյուրեղներում լիցքավորված ռելյատիվիստիկ մասնիկների խուղակավորման էֆեկտիվ պոտենցիալների տեսուՁյունը։ Ծավալակենտրոն և նիստակենտրոն իոնային բյուրեղների համար ստացված են էլեկտրոնային և պոզիտրոնային փնչերի հարթ և առանցքային խուղակավորման էֆեկտիվ պոտենցիալները։