COMPLEX INDEX OF WATER REFRACTION IN SUBMILLIMETER BAND

H. M. AJVAZYAN

The complex index of refraction has been calculated for warm and supercooled water in all the submillimeter band from 1 to 0.1 mm in 0.1 steps for five values of water temperature from $+20^{\circ}\text{C}$ to -20°C in 10°C steps

Изв. АН Армении, Физика, т. 25, мып. 6, 352—355 (1990);

УДК 534.29:539.122

РЕЗОНАНСНОЕ РАССЕЯНИЕ МЁССБАУЭРОВСКОГО ИЗЛУЧЕНИЯ В ТОЛСТЫХ ОБРАЗЦАХ НЕРЖАВЕЮЩЕЙ СТАЛИ

л. а. кочарян, а. ш. григорян, р. г. габриелян э. м. аруткнян

Институт прикладных проблем физики АН Армении.

(Поступила в редакцию 28 июня 1990 г.)

Исследованы некоторые вопросы рассеянного вперед и: назад мессбаузровского излучения в фольге из нержавеющей стали с естественным содержанием изотопа F57. В работе впервые исследовано явление рассеяния мёссбауэровского излучения при наличии в рассеивателе ультразвуковых колебаний.

В опытах по мёссбауюровскому рассеянию оказывается возможным получить существенно большую величину эффекта, чем в опытах на пропускание, что обусловлено меньшим относительным вкладом фона в ретистрируемый поток. Большая величина эффекта и возможность наблюдения утлового распределения рассеянных квантов, в частности, позволяют сравнительно легко расшифровать сложные спектры плохо разрешенных сверхтонких взаимодействий. Спектроскопия на рассеяние в условиях дифракции мессбауюровского излучения несет уникальную информацию о магнитной и электрической структуре кристаллов. Особый интерес представляет изучение таким методом когерентных эффектов, рэлеевского рассеяния и т. д. Наконец, в геометрии рассеяния возможен фазовый анализ кристаллов (так называемая мёссбауюрография).

Впервые безотдаточное ядерное резонансное рассеяние наблюдалось в работе Барлуто и др. [1], в котором использовались источник Sn^{119} и обогащенный образец олова. Из измерений рассеяния, как функции температуры, они вывели фактор Дебая-Валлера поглотителя, хорошо совпадающем со значением, полученным из измерений по поглощению. Блек и Мунн [2] исследовали интерференцию между безотдаточным резонансным (мёссбауэровским) и нерезонансным (рэлеевским) рассеяниями, используя источник Co^{57} и обогащенный образец железа. Фрауенфельдер и др. [3]

набаюдали безотдаточное резонансное рассеяние от Fe^{57} , детектируя рентгеновское излучение, которое следовало за внутренней конверсией электрона, а Канкелейт [4] измерил конверсионные электроны, выбитые из атомов Fe⁵⁷ вследствие поглощения квантов. В работе Меджора [5] безотдаточное ядерное резонансное рассеяние от нержавеющей стали было измерено, как функция скорости источника, толщины рассеивателя, толщины дополнительного поглотителя и угла рассеяния. Наблюдаемое угловое рассеяние он сравнивает с теорией, пренебрегающей многократное рассеяние,.. что неправильно для больших толщин. В работе Дербуннера и Мориссона [6] построена теория безотдаточного резонансного рассеяния мёссбауэровских гамма-квантов в случае одиночной лоренцовской линии. Построенная теория справедлива при пренебрежении ралеевским рассеянием, интерференционными эффектами и многократным рассеянием. В дальнейшем [7] теория была обобщена на случай, когда имеет место магнитное сверхтонкое взаимодействие. Более точная теория переноса мёссбаувровского излучения рассматривалась в работах [8—10], где впервые были учтены многократные акты рассеяния.

В настоящей работе исследованы некоторые вопросы рассеянного вперед и назад мёссбауэровского излучения в фольге из нержавеющей стали с естественным содержанием изотопа Fe^{57} . В работе впервые исследовано явление рассеяния мёссбауэровского излучения при наличии в рассеивателе ультразвуковых колебаний.

В нашем эксперименте рассеиватель закрепляется на столике гониометра с точностью вращения в горизонтальной плоскости 5''. С самого начала геометрия уточняется относительно нормали с помощью лазерного луча. Поток у-квантов из источника Co^{57} через коллиматор падает на рассеиватель и рассеивается вперед и назад на разные углы θ , относительно внешней нормали. Рассеянные тамма-кванты регистрируются детектором, который представляет из себя фотоэлектронный умножитель с сцинтиллятором $Nal\ (TL)$ толщиной 0,15 мм. Выбор такой толщины объясняется обеспечением условия эффективного взаимодействия гамма излучения с $E_{\tau}=14,4$ кэВ и оптимального выхода сцинтиллируемых фотонов. Вращением детектора измеряется зависимость рассеянных назад

 $I^{-}(\eta, v)$ и вперед $I^{+}(\eta, v)$ гамма квантов от скорости источника v и угла выхода γ -кванта θ ($\eta = \cos \theta$).

На рис. 1 (крестики) приведены угловые зависимости интегрального числа рассеяных назад $N^-(\eta)$ и вперед $N^+(\eta)$ гамма квантов, в случае $\tau_0 = 4$ и $\theta_0 = 0$ (угол падения). Как видно из этого рисунка,

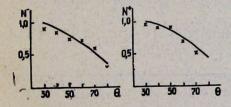


Рис. 1. Угловая зависимость интегральной интенсивности рассеянного назад $N^-(\eta)$ и вперед $N^+(\eta)$ мессбауэровского излучения: X—эксперимент, — —теория.

 \sim увеличением величины угла θ интегральные интенсивности $N^{\pm}(\eta)$ —

 $=\eta\int\limits_{-\infty}^{\infty}I^{\pm}(\eta,v)\,dv$ уменьшаются, что, в основном, связано с уменьше-

нием проекции площади по закону $S=S_0\cos\theta$.

На рис. 2 (крестики) приведены толщинные зависимости интегрального числа рассеянных назад $N^-(\eta)$ и вперед $N^+(\eta)$ гамма квантов в случае, когда угол падения $\theta_0=0^0$ и угол выхода $\theta=60^0$. Как видно, с увеличением толщины τ_0 обе величины N^\pm увеличиваются. Следует отметить,

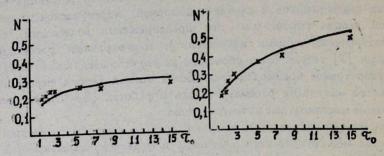


Рис. 2. Толщинная зависимость интегральной интенсивности рассеянного назад $N^-(\eta)$ и вперед $N^+(\eta)$ мёгсбауэровского излучения: X—эксперимент, — —теория.

что при больших т₀, N— достигает своего асимптотического значения, причем экспериментальные данные необходимо сравнивать с теорией, учитывающей многократные рассеяния. На этих же рисунках приведены расчетные значения интенсивностей (сплошные линии), которые хорошо согласуются с экспериментальными данными. Расчеты проведены в прибли-

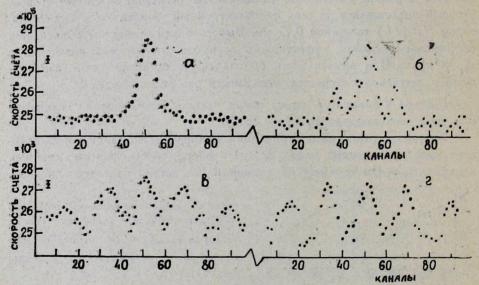


Рис. 3. Мёссбаувровский спектр рассеянного излучения в отсутствии (а) и присутствии (б, в, г) ультразвужовых колебаний. Частота ультразвука $\Omega = 11.2$ МГц, напряжение на пьезопреобразователе U в случае 6—4B, в—9B, г—15B. а, б) $1 \, \kappa = 0.08 \,$ мм/сек, в, г) $1 \, \kappa = 0.06 \,$ мм/сек.

жении упругого элементарного акта рассеяния и анизотропной индикатрис-

Представляет несомненный интерес изучение влияния когерентных ультразвуковых колебаний на спектры рассеянного излучения. С этой целью была изготовлена специальная кювета, в которой в качестве акустической склейки использовался тонкий слой глицерина для однородной передачи акустических колебаний от пьезопреобразователя к рассеивателю. Как и в спектроскопии по пропусканию, здесь также одиночная линия (рис. 3а) расщепляется на ряд линий (рис. 36, в, г), а именно, на несмещенную линию и сателлиты, которые удалены друг от друга на величину, равную частоте ультразвуковых колебаний. С увеличением мощности ультразвука интенсивности сателлитов увеличивается по мере уменьшения интенсивности основной линии. Такое поведение хорошо согласуется с теоретическими выражениями, полученными в работах [9, 10].

В следующей работе будут даны результаты исследования угловой и толщинной зависимостей рассеянного вперед и назад мёссбауэровского излучения в поле ультразвуковой волны.

Авторы выражают искреннюю благодарность А. Р. Мкртчяну за постановку задачи и полезные обсуждения.

ЛИТЕРАТУРА

- 1. Barloutaut R., Picou J. L., Tzara C. Comp. Rend., 250, 2705 (1960).
- 2. Black P. J., Moon P. B. Nature, 188, 481 (1960).
- 3. Frauenfeldr H. et al. Novo Cim., 19, 183 (1961).
- 4. Kaukeleit E. Physik Z., 164, 442 (1961).
- 5. Major J. K. Nucl. Phys., 33, 325 (1962).
- 6. Debrunner P., Morrison R. J. Rev. Sci. Instr., 36, 145 (1965).
- 7. Balko B., Hoy G. R. Phys. Rev., B, 10, 4523 (1974).
- 8. Мкртчян А. Р., Габриелян Р. Г. Астрофизика, 20, 607 (1984).
- 9. Mkrtchyan A. R. et. al. Phys. Stat. Sol., (b) 139, 583 (1987).
- 10. Gabrielyan R. G., Kotandjan Kh. V. Phys. Stat. Sol., (b) 151, 665 (1989).

ՄՅՈՍԲԱՈՒԵՐՅԱՆ ՃԱՌԱԳԱՅԹՄԱՆ ՌԵԶՈՆԱՆՍԱՅԻՆ ՑՐՈՒՄԸ ՁԺԱՆԳՈՏՎՈՂ ՊՈՂՊԱՏԻ ՀԱՍՏ ՆՄՈՒՇՆԵՐՈՒՄ

Հ. Ա. ՔՈՉԱՐՅԱՆ, Ա. Շ. ԳՐԻԳՈՐՅԱՆ, Ռ. Գ. ԳԱԲՐԻԵԼՅԱՆ, Է. Մ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ

Դիտարկված է Fe⁵⁷ իզոտոպի բնական պարունակություն ունեցող չժանդոտվող պողպատում մյոսբաուհրյան ճառագայթման ռեղոնանսային ցրումը դեպի առաջ և հա։ Առաջին անգամ՝ փորձնականորհն ուսումնասիրված է մյոսբաուհրյան ճառագայթման ցրման երևույթը նմուչում՝ ուլտրաձայնային տատանումների առկայության դեպջում։

R ESCNANT SCATTERING OF GAMMA-RADIATION IN THICK SAMPLES OF STAINLESS STEEL

L. A. KOCHARYAN, A. SH. GRIGORYAN, R. G. GABRIELYAN, E. M. HARUTYUNYAN

Some problems of forward and backward scattering of Mössbauer radiation in stainless steel foils with a natural content of ⁵⁷Fe isotopes have been investigated. For the first time the scattering of Mössbauer radiation is studied in the presence of ultrasonic oscillations in the scatterer.