КРАТКИЕ СООБШЕНИЯ

РАСШНУРОВАНИЕ КОНТРАГИРОВАННОГО РАЗРЯДА ЗВУКОМ

А. Р. МКРТЧЯН, А. Р. АРАМЯН, Г. А. ГАЛЕЧЯН

Институт прикладных проблем физики АН АрмССР

(Поступила в редакцию 15 ноября 1989 г.)

В работе получено, что под влиянием звуковой волны интенсивностью 80 дБ, направленной вдоль газового разряда, происходит расконтрагирование шнурованного положительного столба.

Известно, что повышение давления газа в разряде при постоянном токе или увеличение разрядного тока при неизменном давлении приводит к сжатию положительного столба в тонкий, яркий шнур. При этом происходит рост температуры газа на оси разряда и изменение формы распределения концентрации электронов столба с параболической на колоколообразную [1, 2]. Получение неконтрагированного однородного разряда при повышенных давлениях газа является ключевой проблемой при создании газоразрядных лазеров высокого давления, так как это позволяет поднимать выходную мощность оптического генератора, не увеличивая его габаритов. К настоящему времени разработан ряд способов, блатодаря которым получены однородные тазовые разряды при высоких давлениях
[3, 4]. Одним из основных методов расконтрагирования разряда при больших давлениях янляется высокоскоростная прокачка газа через разрядную камеру, в которой в результате турбулентного перемешивания образуется однородный стационарный разряд при высоких давлениях [5, 6].

В данной работе будет описан новый способ расшнурования контрагированного разряда эвуковыми волнами, направленными вдоль положительного столба газового разряда.

Экспериментальные исследования были выполнены в кварцевой разрядной трубке диаметром 60 мм и длиной 100 см. Электроды были прикреплены в виде отростков к боковым стенкам трубки. К одному из торцов трубки был прикреплен излучатель звуковых воли, к противоположному—микрофон.

На рисунке приведены распределения относительного тока насыщения двойных электрических зондов по радиусу положительного столба разряда в артоне при давлении 60 мм рт. ст. и разрядном токе 50 мА. Кривая 1 соответствует радиальному распределению зондового тока в отсутствии звуковой волны. Диаметр видимой границы контрагированного положительного столба был равен ~ 2 см. Кривая 2 получена при наличии стоячей звуковой волны интенсивностью 80 дВ, частотой 190 Гц, половина длины волны которой равна длине трубки. Из представленных профи-

лей распределения зондового тока по радиусу положительного столба видно, что при включении звуковой волны диаметр разряда увеличивается поимерно в два раза.

Процесс расконтрагирования плазменного столба газового разряда звуковыми волнами происходит только при резонансных условиях, т. е.

когда в трубке образуются стоячие волны.

Проанализируем возможные механизмы, приводящие к расконтрагированию положительного столба газового разряда звуковыми волнами. В

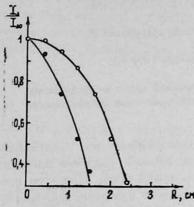


Рис. Распределение относительного тока на сыщения двойных электрических зондов по радвусу положительного столба разряда в аргоне при давлении 60 мм рт. ст. и разрядном токе 50 мА в трубке с внутренним днаметров 60 мм. Кривая 1 в отсутствие звуковой волны, кривая 2 при наличии звука с интенсивностью 80 дБ.

настоящее время видятся три таких механизма. Первый из них описан в работе [7]. Вследствие того, что в цилиндрической разрядной трубке при распространении по ней звуковой волны действует радиальная мода волны, по радиусу разряда образуется поток нейтральных частиц. Этот поток отводит к стенке часть тепла, выделяемого током в разряде, и вызывает уменьшение радиального градиента температуры газа. Последнее обстоятельство приводит к более равномерному распределению плотности газа и частоты ионизации по радиусу разряда и способствует увеличению диаметра положительного столба.

Второй механизм заключается в том, что при наличии стоячей волны в разряде, направленной вдоль положительного столба, между уплотненными и разреженными слоями плазмы будут возникать продольные потоки атомов и молекул, направление которых будет меняться с изменением фазы волны. Эти продольные потоки нейтральных частиц будут вызывать дополнительный отвод тепла от оси разряда к стенке и приводить к расширению разряда. Величина продольного потока нейтралов по радмусу разряда будет переменна, т. е. на оси ее значение будет наибольшей, а на стенке трубки равна нулю. Скорость потока на оси трубки будет функцией интенсивности звука. С ростом силы звука величина потока нейтральных частиц на оси будет возрастать и при определенной интенсивности градиент скорости газа у стенки трубки достигнет такого значения, что проивойдет разрыв пограничного слоя и продольный поток газа из ламинарной формы перейдет в турбулентную. В разряде будет происходить турбулентное перемешивание газа, которое вызовет расшнурование контрагированного столба. В этом заключается третий механизм. Следует отметить, что при визуальном наблюдении за разрядом в процессе экспериментального исследования при больших интенсивностях звука (\sim 80 дБ) положительный столб под действием звуковых воли начинает пульсировать, изгибаться, т. е. в разряде возникают турбулентные пульсации и наступает расширение шнура [3].

ЛИТЕРАТУРА

- Галечян Г. А. В кн. Химия плазмы. Вып. 7. Под ред. Б. М. Смирнова. Атомиздат, М., с. 218, 1980.
- 2. Грановский В. Л. Электрический ток в газе. Изд. Наука, М., 1971.
- 3. Галечян Г. А., Петросян С. И. ЖПМТФ, № 6, с. 9 (1975).
- 4. Demaria A. J. Proc. IEEE, 61, 731 (1973).
- Галечян Г. А., Петросян С. И. ТВТ. 14, 931 (1976).
- Галечян Г. А. В кн. Химия плазмы. Вып. 10. Под ред. Б. М. Смирнова. Энергоатомиздат, М., с. 73, 1983.
- Галечян Г. А., Тавакалян Л. Б., Антинян Н. А. Тез. докл. Всесоюзного науч. сем. «Взаимодействие акустических волн с плазмой», Ереван, с. 65, 1989.

ՍԵՂՄ ՊԱՐՊՄԱՆ ԱՊԱՔՈՒՂԱՑՈՒՄԸ ՁԱՑՆՈՎ

Ա. Ռ. ՄԿՐՏՉՑԱՆ, Ա. Ռ. ԱՐԱՄՑԱՆ, Գ. Ա. ԳԱԼԵՉՑԱՆ

Աշխատանքում ստացված է, որ 80 դԲ ինտենսիվությամբ գաղային պարպման երկայնքով տարածվող ձայնային ալիքը առաջացնում է սեղմված դրական սյան ապաքուղացում։

DISCHARGE DECONTRACTION BY THE SOUND WAVE

A. R. MKRTCHYAN A. R. ARAMYAN, G. A. GALECHYAN

The contracted positive column of the glow discharge is shown to be decontracted under the influence of a sound wave, whose intensity is 80 dB and which is directed along the gas discharge.