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Abstract. We consider convergence acceleration of the modified
Fourier expansions by trigonometric-rational corrections which
lead to the modified Fourier-Pade approximations. Exact con-
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Introduction
The modified Fourier basis

H = {cosmnz :n € Z,}U{sinm(n — 1)z :n € N}

was originally proposed by Krein [I] and then thoroughly investigated in
a series of papers [2H9]. The set #H is an orthonormal basis of Lo[—1,1]
([2]), as H consists of eigenfunctions of the Sturm-Liouville operator £ =
—d?/dz* with Neumann boundary conditions /(1) = u/(—1) = 0. Both the
orthogonality and the density in Ls[—1, 1] follow from the classical spectral

theory ([10]).
Let My(f,z) be the truncated modified Fourier series

N
Mn(f,x) = %fé + Zl[fﬁ cosTnx + fisinm(n — 3],
where
1 1
o= /_1 f(z) cosmnzdz, f; = /_1 f(z)sinm(n — 3)zde.
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Important property of {f¢} and {f7}, which explains the better convergence
of the modified expansions as compared to the classical truncated Fourier
series, is the faster decay of the coefficients

mofn=0(n7%), n — o0

for smooth but non-periodic functions. The benefit of using such expansions
to approximate a smooth but non-periodic function f is a faster convergence
rate. Moreover the convergence is uniform in [—1, 1] and there is no Gibbs
phenomenon on the boundary.

The first results on the pointwise convergence of the modified series were
proved in [2]:

Theorem 1 [2] Suppose that f is Riemann integrable in [—1,1] and that
cfE=0Mn1), n> 1.

If f is Lipschitz at x € (—1,1) then My(f,z) — f(z) as N — co. More-
over, this progression to a limit is uniform in |o, 8], where —1 < a < < 1,

provided that f € Cla, f].

Theorem 2 [2] If f is an odd and analytic function, then My(f,x) uni-
formly converges to f(x) in [—1,1] and, moreover,

My(f, £1) = f(£1) + O(N!), N — <.

Given that My (f,+1) = f(£1) + O(N™!) for any even and analytic f in
[—1,1], we conclude that the modified Fourier expansions for all analytic
functions converge at the endpoints by the rate O(N~') ([2]).

Olver in [6] proved the convergence of the modified expansions at the
endpoints without requiring that f is analytic:

Theorem 3 [0] Suppose that f € C*[—1,1] and f" has bounded variation.
Then
My (f,£1) = f(£1).

Olver also proved that the convergence rate of the modified expansions
is O(N~?) away from the endpoints:

Theorem 4 [0] Suppose that f € C?[—1,1], f”" has bounded variation. If
€ (—1,1), then

f@) = My(f,2) = O(N7?), 2] < L.

Under some additional requirements, the convergence rate is faster:
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Theorem 5 [3, 6] Suppose that f € C*+2(—1,1), f®+2) has bounded vari-
ation and [ obeys the first k derivative conditions

f(2r+1)(:|:1) — ()’ r = 0, ce k—1. (3)

Then, the error

f(@) = My(f,z) = O(N~*72),

uniformly for x in compact subsets of (—1,1).

We see that the convergence rate remains slow if the function f does
not obey the first derivative conditions (). The uniform error is O(N 1)
n [—1,1] and O(N~?) inside. This is due to function jumps in certain
derivatives at the endpoints x = +1. If these jumps are known, the conver-
gence acceleration can be achieved by well-known polynomial subtraction
approach. For the classical Fourier series this approach has a very long his-
tory (see [9 TTHIT7]). For modified expansions these approach is explored in
[4, 8 9]. More specifically, we write f (see [9]) in the terms of its Lanczos
representation

f=f—9)+ gk,

where g is chosen such that conditions
FED D) = g2 (+1), r =0,... k- 1.
Since f — gx obeys the first k derivative conditions, the new approximation

M (f,2) = My(f — g1, ) + g

will converge with the same rate as if f obeyed those conditions. This is the
polynomial subtraction technique known also as Krylov-Lanczos approach.

Adcock in [5, 9] explored the convergence of the modified expansions in
the Sobolev spaces H?,q > 0. In particular, he proved that the modified
basis is dense in H'(—1,1) and ||f — Mn(f,2)|lsc — 0 as N — oo for
VfeHY(-1,1).

Multivariate modified Fourier expansions were investigated in [3, [7H9).

In this paper, we consider convergence acceleration of the truncated mod-
ified Fourier series along the ideas of the Fourier-Pade approximations ([18-
210).

The paper is organized as follows. Section [1| provides exact constants of
the asymptotic errors for the modified expansions. Both L, and pointwise
(see also [9] for similar results) convergences are considered. We need those
results for further comparisons. Section [2| explains the construction of the
rational approximations by application of trigonometric-rational corrections
to the errors of modified expansions. Rational corrections contain some un-
known parameters. Their determination is carried out along the ideas of
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the Fourier-Pade approximations. That is why those approximations are
named as modified Fourier-Pade approximations. Sections [3| and 4] inves-
tigate the pointwise and Lo convergence, correspondingly. Section [5] gives
some concluding remarks.

1 Convergence of the Modified Fourier Ex-
pansions

In this section, we derive exact estimates for the asymptotic errors of the
modified Fourier expansions that we need for further comparisons. We focus
our attention to Ly(—1,1) and pointwise convergence on (—1,1).

Let f2atD) ¢ C[—1,1], ¢ > 0 and denote

A2k+l<f) = (f(2k+1)(1) - f(2k+1)(_1)) (_1)1@»’ k=0,...,q,
Boa(f) = (fED(1) + fEHD(=1)) (1), k=0,...q.

The following lemmas (see also [2| [0l [7] for similar estimates) are the
cornerstones for all asymptotic expansions provided in this paper.

Lemma 1 Assume that f?*) ¢ AC[-1,1], ¢ > 0. Then, the following
asymptotic expansions are valid

fo= (S Ael) ey o

n — (ﬂn)2k+2
N By
nHZ _l 2k+2+0(n “ 2)n—>oo
0 2

Proof. The proof immediately follows from the following expansions de-
rived by means of integration by parts

chL _ (_1>ni A2k+1(f) + (_1)(1+1 /_11 f(2q+2)<x> cos mnadsr, (4)

e (n)2+2 " (7n)2at2

q

I = (_1)n+1 kz_; ( (BZk+2§)2)k+2+

(—1)ett Y oear2) 2 sinr(n — Dede
(m(n — 1))2a+ /1f (z) (n— Dadx. (5)
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In particular, if f4+Y ¢ AC[—1,1], ¢ > 0 and f**+1(£1) =0,
k=0,...,q— 1, then Lemma [I] implies

n A2q+1 (f)

fo=(-1) W + o(n—2q—2)7 n — oo (6)

and
BQqul(f)

(7(n — D)2 +o(n %), n = oo. (7)

fi = (~1y

Lemma 2 Assume that f?2 ¢ AC[-1,1], ¢ > 0. Then, the following
asymptotic expansions are valid

fc _ (_1)17,2 A2k+1(.f) —|—0(n_2q_3)7 n — 0o,

n . (7rn)2k+2

s n+1 - BQk’-i‘l(f) —2q—3
fi= (-1 E o to(nT ), n = oo
= (m(n — )%+

Proof. In view of higher smoothness of f, from and we have

a4 e gt
fr = (_1)nz (7:2;15{2) + (7571)2)4+3 /_lf(2q+3)(x) sin mnadr,

k=0

: BZk—i—l(f)

(r(n - %))M*

Lo+t (20+3)( 1
q
B / f )cosm(n — 5)wdr,

which conclude the proof. [

In particular, if f24+2) ¢ AC[—1,1], ¢ > 0 and fZ*+1(£1) =0,
k=0,...,q— 1, then Lemma [2] implies

n A2q+1 (f)

fé=(-1) (e )2 +o(n"23), n = 0o (8)

and
BQqul(f)

((n = 1)

+o(n"2773), n — oo. 9)

fo= (=1
Now denote

RN(f,l'):f(fL‘)—MN(f,iL‘)
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Assuming that My(f, x) converges pointwise to f(x), we can write

Ry(f,x) = Y (frcosmnx + frsinm(n — 3)a) = Ry(f,2) + Ry(f. ),
n=N+1
) (10)
where
Ry (f,x) = Z fecosmnx, Ry (f,z) = Z fosinm(n — 4)w.
n=N+1 n=N-+1

Next theorem deals with Lo-convergence of the modified Fourier expan-
sions.

Theorem 6 Assume that f@?) ¢ AC[-1,1], ¢ > 0 and
fEHD(£)=0,k=0,...,q— 1.
Then, the following estimate holds

. 3
Tim N8| Ryl = (g)y/ A3a () + By (), (11)

where
1

A0 = T I s
Proof. Estimates () and (7)) together with imply

1By (f2)llE, = D (f)7+ (£
n=N+1
a4 nAg+4 rlg+4 (n — L)datd
n=N+1 n=N+1 2
+o(N~473) N — oo.
This concludes the proof. []
Now, we continue with the pointwise convergence. Denote
Ag(fn) = Jn, Aﬁ(fn) = Aﬁil(fn) Ak l(fn) k>1 (12)
Lemma 3 Let ! > 0, and
—1)" 1"
Pl,n = ( 2)l 9 Ql,n = ( 1> 2042 "
()2 (m(n —3))*+
Then . ol 1
NP = B, CXR (P2 !
’ Toonp 20+ 1
and

(=1)Pp! (p+20+1 —9i—p_3
Ap n) = n —p— .
n(@n) = Q1 np 20+ 1 )
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Proof. We have

st =3 ()= 3 () e i

k=0

(-1 (P (-1

k=0

p (D 00 ] L 7j—2l—1
=P, (-1 -
20 (1) 32 () )
k=0 7j=2l4+1
p o]

where (see [17])

Qo = zk: (’;) (=1)*s™, m > 0. (13)

This concludes the proof as oy, ; =0, j =0,...,p—1 and o, = (—1)Ppl.
Similarly we prove the second estimate. [

Theorem 7 Let %2 ¢ AC[-1,1], ¢ > 0 and
fEHD(£1)=0,k=0,...,q— 1.
Then, the following estimate holds for |x| < 1

(=1)N*tcosm(N + 3)z
RN(fa l’) = A2(1+1<f) 2 N2a+2729+2 cog %

+0o(N"27?) N — 0.

(—=1)VsinTNx
2N2a+220+2 cos IF

+ BZq+1 (f)

Proof. The Abel transformation implies

1% COST&'(N + )
RS § ; = — 2
S (f, ) P N+1f COS TNT = 2 cos 22

Z AL (fe)cosm(n — Lz,

2 cos I%
=N+1



ON A CONVERGENCE OF THE MODIFIED FOURIER-PADE APPROXIMATIONS

and
s frsinTt Nz
RN (f, ) Z fisinm(n ) By
n=N+1 2
2008% Z Al (f5)sinm(n — 1)z.
—N+1

Reiteration of this transformation leads to the following expansions

f& cosm(N + 3z AN(f5) costNw

Ry(f,2) = - 2 cos % 4 cos? IF
AZ(f9) -1
4cos2 = Z (fe)ycosm(n — 1)z,
n=N+1
and
5 _ fisinaNz  AR(fR) sinm(N — )z
Ry(fz) = 2 cos & 4 cos? I
1
+—— Toos? =2 Z A2 (f3)sinm(n — 2)z.
n=N+1
According to estimates , @D and Lemma , we have
AN(fx) = O(NT72) AL(fr) = o(n™17%), (14)
and
AN(f) = O(NT72), AR (fn) = o(n™217%), (15)

which conclude the proof. []

2 Modified Fourier-Pade Approximations

In a series of papers ([20H25]) the convergence acceleration of the truncated
Fourier series and trigonometric interpolation were achieved by application
of trigonometric-rational functions as corrections to the corresponding er-
rors. Rational corrections contain unknown parameters and different ap-
proaches are known for their determination. One approach leads to Fourier-
Pade approximations ([I8, 20]). Here, the same idea we apply for the mod-
ified expansions.

Consider a finite sequence of real numbers {0}, _, ,p > 1 and by Ak (0, f,)
denote the following generalized finite differences

A2<97 fn) = fn,
AN(O, fo) = AYTHO, fo) + 0 AZ1(0, fo), k> 1
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0, =1 k=1

,p, we get the classical finite differences

AZ(& fn) =

AR (fn)-
The Abel transformation implies (details see in [20])
c c _imne 1 = c_—imne
mU=L S el S g
n=N+1 n=N+1
e Ve B ekl (ge fey  gmim(NtDe Z ORAN 1 (0° £7)
- k i N k —iTT
2 i Loy (1+ Gcer™) 2 o Loy (14 femim)
1
. “rx Z Ap 9° fc) imnT
20, (1 + o) 2
1
Ap gc. fc —zwna:,
D
and
S € “;I - S _iTNnT GMTZ - S —imnT
Ry(fa)=—— > Fue™ === > fie
n=N+1
eiﬂ’(NJr%)x p

n=N+1

3 ORAN (0%, f) e Z ORAN(0°, £)
2 I [Ty (1 + fzeime) 2 gl

7,7Tz

(1 )
- — - _mw Z Ap 93 s o imna
2i ( + Oe el
e 11;:6
+ . — Ap 08 fS) ZT('TLQJ
After some algebraic manipulations, we derive
Ry (f,z) =

cAk=1/pc rc k
—Z bbby (9", /o) > (k6% cosm(N +1—1t)
[To_; (1 +26¢cosma + (62)?) =

and

+ R, (f, @),
Ry(f,x) =
RS O AN (600, f2)

1
k,0°)sinw(N += —t
k=1 Hle(l + 203 cosmx + (62)?) ZVt( ) ( )

t=0

Ry, (f,2),
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where
Bl ) = 515 s e ; AP(E, for6m
A= %N’ (¢, fr)e ™, (16)
R}Sv,p(f,flf):% Z:(_lmi Greimo) ;rlAp (62, f2)eimme
S

=N+1
and v;(k, 0) are defined by the following identity

k

[T+ 0) = (k. 0)2". (17)

t=0

These expansions lead to modified Fourier-Pade (MFP) approximations

My (f, ) = My(f, )

B Z ecAk—l(ec fc)
[, (1+26¢cosmx + (09)?)

k
Z% (k,0% cosm(N +1—t)x

t=0

N :
—Z - AN (0, 1) nyt(k,ﬁs)sinﬂ(]\f—ir%—t)x (18)
IT,—(1+ 208 cosmx + (05)%) 1=

with the error

Byp(fx) = f(x) = My (f,2) = Ry, (f, ) + Ry, (f, @),

where unknown parameters {65} and {05}, k = 1, ..., p are determined from
the following systems of equations

APO fY=0,n=N,N—1,....N—p+1, (19)

and
APO* fY=0,n=N,N—1,...,N—p+ 1. (20)

Systems and can be reformulated as linear systems of equations
with unknowns ~x(p, 0¢) and v (p, 6°)

AR (6, f5) = f+2w, fiy=0,n=NN-1,... N-p+1, (21)
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and
p
k=1

Then, {65} and {6;}, k = 1,...,p, can be determined from (17)), with k = p,
as the roots of the corresponding polynomials.

According to systems and , coefficients 7 (p, @) would have the
following asymptotic expansions (if f is enough smooth, see below)

o _ N Vi o N\ Vi
Vj(pae )_ ﬁ77j<p’9 )_ZNt (23)
t=0 t=0
with some constants 75, and 7;,. In particular,
v;i(p,0°) = O(1), v(p,0°) = O(1), N — oc. (24)

More precisely,

s c p
Yo = Vio = ( ) (25)

J

In the further sections, we investigate the convergence of the MFP-appro-
ximations in the frameworks of the pointwise and Ly(—1,1) convergences.

3 Pointwise Convergence
First, we prove some lemmas.

Lemma 4 Let f20t2+2) ¢ AC[-1,1], ¢ > 0, p > 1, and let the systems
, have unique solutions. If

fEH(£1) =0, k=0,...,¢—1,
then, the following estimates are valid
AR(AR (O, f7) = O(n™"72172) 4 o(n™*7*7%), n > N + 1, N — oo,
and
AY(AP(0% f5)) = O(n 727 2) 4 o(n 2" %#73) n > N +1, N — 0.

Proof. We provide the proof for the coefficients f¢ only. According to the
estimate

q+p
o= (1rS férTm T o(n2 ), (26)
l=q
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Then,

A(AL(O, 1) Z%p,ecw i)

q+p

= Z %s(p, 6° Z A1 (/) AR () + o(n2072073),
5=0

Taking into account the estimates and Lemma |3| we get the desired
estimate.l]

Lemma 5 Let f21t2+2) ¢ AC[-1,1], ¢ > 0, p > 1, and let the systems
, have unique solutions. If

f(2k+1)(:|:1>207 k=0,...,qg—1,

and
Asg1(f)Baga(f) #0,

then, the following estimates are valid

AN(ALE° 1)) =

(—DN (2 +w + 1) & 2 +w+t+1
Azgi1(f) m20+2 N2a+ptw+2(2g 4 1)] Zﬁt 2g+w+1

+0( ) Ho(NTHTETE), - (27)

AR (AL0°, 1)) =

(—)NFHFU(2g 4w + 1) 2q+w+t—|—1
Bag1(f) T20+2 N2+p+wt2( ;Zﬁt
a+2 N2a+p (2¢+1) 2g+w+1

+O( T o(NTHTETE), - (28)

where
p p

Bo(t) =3 (=1Y95,4", Ba(t) =Y (=1)7;,5" (29)

Jj=0 J=0

and 75, Vi, are the coefficients of the asymptotic expansions

2p+1 . 2p+1

. ;, oy s v; oy
%P0 =Y o TN, (p,0%) = Y+ o(NTHT). - (30)

t=0 t=0

Proof. We will prove only the estimate . The estimate can be
handled similarly. The existence of the asymptotic expansions follows
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from the smoothness of f and the solutions of the systems , specified
applying the Crammer rule. Then, we have

AR (AR5, 1) Z% p,0) AN ()
= Z ( ) ZVs(pa ec)fjc\ffkfsa

where ~,(p, 6°) are the solutions of the system . From ([26)), we derive

q+p

A f)
N s—k 2z+1 9g—2p—3
Z — 5))2+2 +o(N7H)

f]c\f—s—k

q+p o] . ) (k + S)j_Ql_l

A
o N sk 211 (f J
oSl 3 (M =

=2l+1
+ o( N2 - 3)

g 201 (3] :
:(—1)N e 1 i Asgran (f) (2047 +1 (k + 5)7~2
(mN)2a+2 = Ni 2 2 +20+1

+ O<N—2q—2p—3) ]

=0

Substituting this and the first equation of into (31]), we obtain

AL (A2(6, £9)) Z( )Zv P 0) fR—ks

2p+1 j .

pz i A2q+2[+1 2q+]—t—|—1 %
7TN 2q+2 Ni purdie 2 2+ 20+ 1
Jj—t—21

X Z ( —t- 2l) O‘w,uﬁjc'—t—Zlfu(w

—|—O(N 2q—2p— 3)7

where a,,, is defined by .
Taking into account that (see[I7])
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we get

AN(AP(O, fr) = S A2q+2l+1 2q+j—t+1
7-[-]\/' 2q+2ZN]ZO Z 7T2l 2q+2l+1
t p—

—t—21

Jg—t—2l . 9g—9p—
. Z ( g )aw,uﬂj_t_m_uwouv -2

2p—w+1

Asgraa(f) (2¢+7+w—t+1
- 7T2q+2Nw+2q+2 Z Z Z 7T2l 2q + 21 +1

t=0 [=

j—t—21 . +w— ‘_ 2l
- (J )aw,wwﬁ;_t_m_u(t) T o(N23)
u=0

U+ w

B (—1)N 2p—Zw:+1 1 ZJ: Z Asgio1(f) (2(] +t+w+ 1)

T g2 Nwk2et? N e 2+ 20 + 1

§=0 t=0 [=0
t—21
t+w— 21 . ] P
x> ( )aw,wﬁtmo — 1) + o( N2y,

g U+ w
Finally, we derive

AN (A0, 1)) =

\ o~

2p—w+1 (5]
(=1)¥ ”Z+ 1 i Aggroa (f) (20 +t+w+1
7T2q+2Nw+2q+2 j 71-2[ 2(] + 2l + 1

t=0 [=

-2
X Z ( >aw,t2€u+wﬁ§(j - t) + O(N72q72p73)' (32)

u=0 u
By similar arguments as in [20], it is possible to show that
Buli—1)=0,j=0,....p—10<t<j;0<u<t. (33)
Thus, from (32)), we obtain

AR (AL, 7)) =

z Asgran(f) (2¢+1+w+1
7T2q+2Np+w+2q+2 Z Z 2 2(] + 204+ 1

t=0 [=0
t—2¢
t+w— 2l
XZO( u )awt 20— u—i—wﬁ( _t>

+ O(N—p—w—Qq—S) + O(N_Zq_Qp_3).
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It remains to notice that only the term u = ¢, [ = 0 is not zero, and therefore,

AR (AL, 7)) =

(DN = (20 +t+w+1\ [t +w) ,
AQq-H(f) 7T2q+2Np+w+2q+2 tz; 2q + 1 ¢ /Bt (p - t)

+ O(N_p—w—Qq—?)) + O(N—Qq—Qp—?)).

This concludes the proof since v, = (—1)*w!. O

Theorem 8 Let f21t27+2) ¢ AC[—1,1], ¢ > 0, p > 1, and let the systems
, have unique solutions. If

f(2k+1)(j:1) =0, k=0,...,9—1,

and
Azg1(f)Bag+1(f) # 0,

then, the following estimates are valid for x € (—1,1)

Nolfs ) =
A (=D)N* (2 +p+1)lp!  cos TE(2N —2p +1)
2041(f) 22p+120+2 N24+2p+2(24 4 1)! cos?P 1 ZE

4 O(N72q72p72) ’

and

Ry, (f,x) =
B (—D)N(2¢+p+1)lp!  sin TF(2N — 2p)
20+1(f) 22 +1r20+2 N20+2p+2(2g + 1)l cos?+1 22

+o(N"2772),

Proof. We estimate Rf; (f,x). According to the estimate (23)), we have

p
H(l + 05e™) — (1 +e™)P, N — o0,
k=1

and it remains to estimate only the sum in the right hand side of

[e's) 2p+1
- ~ AR (AR (", £7)
AZ(ch fﬁ)ezwnm — _ez7r(N+l)z N n n
2 2 e

1

e D AT )

n=N-+1
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Taking into account that
k
Ak(APec c Z()Agvsec]cc)
s=0
we see from that
AR (AP0 F)) =0, k=0,...,p—1.
Therefore
Z Ap 90 c Mrnx o
n=N+1
C C 2 +1 w C C
in(v1)e A (AR (67, f7)) _ gim(Nt)e pz AR (AL (0°, fr)
(]_ + ewrac)p-‘,—l St (]_ + efm:c)w—‘rl
1 ad .
s > APT(AL (6, f0))E . (34)

(1 + ezwx)2p+2 el

Lemma M shows that
AZF(AL( £5)) = oln™ 7). n 5 oc,

Hence, the last term in the right hand side of is o( N=2P72472)  as
N — oo. According to Lemma

AN (AL (0°, f1)) = O(N7277P72) 4 o(N72707P72) - N — oo,

As in the second term of the right hand side of , the parameter w is
ranging from w = p + 1 to w = 2p + 1, then this term is O(N24-%73),
Hence,

Z AP 90 c wm:c_ 6 w(N+1)x A?V(AZ(chfﬁ))+O(N—2q—2p—2)
! (14 eim)ortt |

where N — co. Similarly

—im(N+1)z AR (Ap(ec fc))

(1 + e~ z7rx>2p+1 +0(N_2‘1—2p—2)’ (35)

i Aﬁ(ec’ fﬁ)e—zﬁrnaz = —¢

n=N+1

where N — oco. Therefore,

_invne AN (A0, f) (v O (AR(0%, £7))

RN,p(f> -T) - (1 + emw)2p+1 e (1 + e zmz)2p+1 (36)
+o(N~27272) " N — oo0.

135
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Finally, we need to estimate A% (AP (¢, f¢)). Again by Lemma , we have

(_ 1 ) N+p
N2 +20+272442(2¢ 4 1)

p
. 2q +p+1+1)! P
<> Al )" )
t=0

AR (AL(0% 1)) = Azga(f)

(37)

t!

It is possible to show (details see in [20]) that the sum in the right-hand

side of equals to (—1)Pp!(p +2¢ + 1)L
Hence,

(—D)N(2¢+ 1+ p)!(p)!

—2q—2p—2
N2p+2q+2ﬂ-2q+2(2q + 1)! + O(N )

AR (AR(0% 1) = Azgia(f)

Together with it implies

NS 1) =

A (=DM (2g + 1+ p)'p! e/m N
2q+1(f) N2p+2q+27r2q+2(2q + 1)| (1 + 6i7rx)2p+1

] + o(N~207272)  (38)
Similarly, we can show that

Ry, (f,2) =

6i7r(N+%):c
Z(l + eiwz)2p+1

O(N—Qq—Qp—2>

(—D)N(2¢ + 1+ p)!p!

N2 +20+27520+2(2g + 1) "

B2q+1 (f)

which completes the proof.[]

4  Lo-Convergence

In this section, we investigate Lo-convergence of the Fourier-Pade approx-
imation. Taking into account , we see that 07,0; — 1, as N — ooc.
Let

C Tc - S 7'8 -
szl—ﬁk—l—o(]\f D, ekzl—NkJro(N Yok=1,...,p. (39)

To determinate {77} and {77} we compare two results that outline the be-
havior of AP(0° f¢) and AP (0%, f2).

n

Lemma 6 Let fCrt7+) ¢ AC[-1,1], ¢ > 0. Let

fEH(£1)=0,k=0,...,¢—1
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and

Asg1(f)Baga(f) # 0.

If systems , have unique solutions, then, the following estimates are
valid

AL 1) = Azgia (f)

(-D)™(2¢+p+1)! <1 B n)p

NPp2a+2720+2(2g + 1) N (40)

+ o(N n> N,N — oo,

_p)ma

__1\n+1 _ 1IN\ P
AP0, £2) = By (1) 2atp 1) (1_” )

NpPn2a+2720+2(2g + 1)

1
+o(N7P) 2+2,n>N,N—>oo.

Proof. We will prove only the first estimate. The proof, in general, imitate
the one of Lemma , so we omit some details. Let 75, be the coefficients of
the asymptotic expansion

Vs(p, 0°) = Z Et +o(N7").

t=0

We replicate the arguments in the proof of Lemma [5] then apply Lemma
(when p is even) or Lemma 2 (when p is odd), and at last we obtain

s=0 t=0

A2q+2l+1 20+7+1Y ;o —2¢—p—2
2q+2 z; nj Z 7T2[ 2q + 2l + 1 s + O(n )
j

3]
Ao (f) (2g+20+1 :
¢ —t
Z 7T2l 2q+t+1 Bt72l<j )

[
N 1=0

- 7rn2‘1+QZNJZ n)

_ 1
+ O(N p)w,

where 3%(j —t) are defined by (29). From the proof of Lemma [f] we know
that

Bi(j—t)=0,7=0,....p—1;0<p<j;0<u<t.
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Therefore

AL(0%, f7) =

This concludes the proof as (see [20])

3 1(?;jﬁ§@@—w p“*ye)

= (%)

O
Lemma 7 Let fCrt7+) ¢ AC[—1,1], ¢ > 0. Let
fEH(£1)=0,k=0,...,¢—1,
Azqi1(f)Bagr1(f) # 0,

and

Ty T
= 0,=1—=k=1,...,p.
Nv k N: ) Y

Then, the following estimates hold forn > N, as N — oo

o;=1—

AL (0% fr) =

(—1)*p " (2g+p — k4 D)I(=1)ky(79)
A2q+1 (f) n2q+2(2q + 1)!7T2q+2 ; Nk'np—k
_ 1
+o(N p)w,
AL(GF, ) =
By (f) e D" SR Qe p— k£ D=L ()
2t 202 (2 4 1) 1242 ar Nk(n — Lypk
_ 1
+o(N p)w,
where
p p p p
H(l +Tx) = ka(TC)xk, H(l + Tx) = Z%(Ts)xk.
k=1 k=0 k=1 k=0
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Proof. We will prove only the estimate for AP (¢, f¢). It is not hard to
prove by induction that

anor. ) = 30 EUHT) ot ey (a

k=0

From Lemma [I] (when p is even) or Lemma [2 (when p is odd), and from
Lemma [3| we get

(—=1)"*(2¢ + k + 1)!

—2q—k—2 —2¢—p—2
n20tk+2(2q + 1)l +2 o(n™ ) +o(n 7P,

AL(f) = Az (f)

This estimate, together with , completes the proof.
O

Comparing Lemmas [6] and [7] we get that

N e L 6
() = utr) = LD (7)) (42

Now, we are ready to estimate the Lo - error.

Let h{ and hj be the complete homogeneous symmetric polynomials (see
[26]) of degree k in variables 67,05, ..., 65 and 07,05, ..., 05

he (605,65, ..., 05) = Z 05 - 05,

and

hi (65,05, ...,05) = Z 05 - 05 .

The complete homogeneous symmetric polynomials h{ are characterized by
the following identity of formal power series

o0

(1+90 ; )ER (65,05, ..., 0)a*
where
k-1
he (65,65, ..., 0 Z a 17];1(95_95). (43)

The same we can argue for hj.



140 T. K. BAKARYAN

For , we have

1
2 Hi:l (1 + germ)

1
T OTE, (1+ Gem)

Ry, (f.2) = Z AL(0°, fr)e ™

=N+1

Z Ap ec fc) —iTnT

=N+1

1 0o
_ 52( ) hc iTkx Z Ap ec fc) imnT
k=0 n=N+1
1 - k c —irkzr c pc\,—iTne
+§Z e Z AP(6°, f)e
k=0 n=N+1
1 oo ' s
=3 D (=DRe ™ Y (1) AR(ES, )RS,
s=N+1 n=N+1
1 - k _—imsx - n [ TAY N
D I SRS AT
s=N+1 n=N+1
= Z (—1)* cos s Z L)"AP(0° fo)hs
s=N+1 n=N+1

Performing similar manipulations for R}y (f,z), we get

Ry, (f,x)= > (=1)fsinm(s— Da Y (=1)"AL(6", fi)hi,
s=N+1 n=N+1

Now from orthogonality of modified Fourier series we receive

1R (f 2L, = S1+ 82,

where )
Si= S | ST (—urane gne,|
s=N+1 [n=N+1
and

o0 S

S= S | S0 (—umane, pon,

s=N+1 [n=N+1

Theorem 9 Let %47+ ¢ AC[-1,1], ¢ > 0,p > 1. Let
fEH(£1) =0, k=0,...,¢—1,

and

A3, (f) + B3, (f) #0.
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If the systems and have unique solutions, then

hm N2q+2HRNp(f, )HLQ_Cpq\/AZq—‘,—l (f) + B3,1(f),

where

1
C = ———72X
20 ﬂ_gq_;,_g

' o0
o (p+2q+1)! / gt
<2Q+1)! 1

[\
=

and T, are the roots of the following Laguerre polynomial

H(l + ) = Z (1)

with v(1) defined by ([A2).

Proof. We use the equation . In view of and we have as
N — o

ecp—i-s n—1 B B p (1_TZ+O(N ))p—i—s n—1

55 =N T i —n o)

i=1

Z

— j 1,]751(

Substituting this and estimate into the first term of the right-hand side
of 7 and tending N to infinity, we derive the limit

4q+3
A}ljréoN S —c A2q+1

Similarly,

4q+3
]\}I_I)I;ON Sa —c B2qJrl

which conclude the proof. [

5 Conclusion

In this article, we have considered convergence acceleration of the modified
expansions (see (/1)) by application of trigonometric-rational error-correction
functions. Corrections contain some unknown parameters determined ac-
cording to the idea of the Fourier-Pade approximations. The resulting ap-
proximations we have named modified Fourier-Pade (MFP-) approximations
(see (18])). We investigated pointwise and Lo convergence of the MFP-
approximations.
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Section [3| deals with the pointwise convergence. The main result of this
section is Theorem [§] shows that if f obeys first ¢ derivative conditions,
then, the convergence rate of the MFP-approximation is O(N~2P~2472) if
fRar20+2) ¢ AC[—1,1]. Comparing this with the corresponding estimate for
the modified expansions (see Theorem , we get the additional convergence
rate by factor O(N~2?P). However, for modified expansions we required less
smoothness f(?972) ¢ AC[—1,1]. As we mentioned in the Introduction, if a
function f does not obey the first derivative conditions, then by polynomial
subtraction method, we can get the same convergence rate for the modified
and MFP-approximations.

Section [4] deals with Ly-convergence. Comparison of Theorems [ and [
shows the same convergence rates O(N~2473/2) for smooth functions. How-
ever, the constant ¢, , (independent of f) is much smaller than the constant
cq (see [2I]) and the difference is so greater, how the larger are the values of
q and p.
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