УДК 539.216.2

ПРОСТОЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ОПТИЧЕСКИХ ВОЛНОВОДОВ СО СТУПЕНЧАТЫМ ВИДОМ ПРОФИЛЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ

Э. А. АРУТЮНЯН, С. Х. ГАЛОЯН, С. П. ПОГОСЯН

Институт физических исследований АН АрмССР

(Поступила в редакцию 6 июня 1986 г.)

Предложен простой способ определения параметров двухмодовых тонкопленочных оптических волноводов, который одновременно обеспечивает достаточную для практических задач точность применительно к волноводам такого типа с большим числом резонансных мод.

Оптимизация режима работы технологической цепи изготовления различных устройств интегральной оптики с заданными характеристиками требует разработки методов быстрой и точной оценки параметров основного элемента всех оптических интегральных схем — планарного волновода. Ряд основных способов получения оптических волноводов, такие как высокочастотное и ионное распыление, впитаксиальное выращивание и, в некотором приближении, ионное облучение обеспечивают однородность распределения показателя преломления в поперечной плоскости волновода. Этим обстоятельством и обусловлен поиск быстрых методов определения параметров тонкопленочных оптических волноводов с достаточной для практических целей точностью расчетов.

В работе [1] было получено приближенное аналитическое выражение для показателя преломления тонкопленочного волновода n_i , в то время как толщина пленки h и показатель преломления подложки n_s определялись из дисперсионных уравнений методом последовательных приближений. Однако для обеспечения экспресс-контроля параметров тонкопленочных волноводов необходимо получить простые аналитические выражения также для параметров h и n_s . Особо отметим, что в способе определения параметров волновода работы [1] точность расчета величин h и n_s прямо зависит от точности нахождения параметра n_i , поэтому улучшение точности расчета величины n_i имеет принципиально важное значение. Решению этих задач, для разработки простого метода расчета параметров оптических тонкопленочных волноводов, посвящена настоящая работа.

Исходным уравнением является дисперсионное соотношение тонкопленочного оптического волновода [2]:

$$k h n_{fm} = \operatorname{arctg}\left(\frac{n_{mc}}{n_{fm}}\right) + \operatorname{arctg}\left(\frac{n_{ms}}{n_{fm}}\right) + m \pi,$$
 (1)

где принято обозначение: $n_{ij}=(n_i^2-n_j^2)^{1/2},\;k=\frac{2\,\pi}{\lambda},\;\lambda-$ длина волны света в вакууме, $m=0,1,2...\;(M-1),\;M-$ число мод в волноводе. Воспользуемся также основными приближениями работы [1]:

$$\Phi_{cm} = \operatorname{arctg}\left(\frac{n_{mc}}{n_{fm}}\right) \approx \frac{\pi}{2}$$

$$n_{fa}^2 \approx n_{(M-1),s}^2.$$
(2)

И

m = M—1 получим

Из системы (1) с учетом этих приближений для мод волновода с m=0 и

$$\gamma = \frac{\frac{\pi}{2} + \pi (M-1) + \operatorname{arc} \operatorname{tg} \frac{1}{\gamma}}{\frac{\pi}{2} + \operatorname{arc} \operatorname{tg} \gamma}, \quad (3)$$

где

$$\gamma = \frac{n_{f,(M-1)}}{n_{fo}} {4}$$

Из (4) находим выражение для параметра n_f ,

$$n_f = \left(\frac{\gamma^2 n_0^2 - n_{M-1}^2}{\gamma^2 - 1}\right)^{1/2} \tag{5}$$

Отметим, что уравнение (3) позволяет определить более точную величину γ по сравнению с аналогичным расчетом работы [1]. Поэтому с помощью формулы (5) можно получить более прецизионные значения для параметра n_f , что и подтверждается расчетами. Приведем значения γ для двух-, трех- и четырехмодовых волноводов: $\gamma_2 = 1,945169$, $\gamma_3 = 2,91191$, $\gamma_4 = 3,89163$.

Получим также аналитические выражения для быстрого расчета параметров n_8 и h. Из соотношения (2) имеем

$$n_s = \left(\frac{\gamma^2 n_{M-1}^2 - n_0^2}{\gamma^2 - 1}\right)^{1/2} \tag{6}$$

а из дисперсионного уравнения (1) для моды m=0 получим

$$h = \frac{\arctan \left(\frac{n_{oc}}{n_{fo}}\right) + \arctan \operatorname{tg} \gamma}{k \, n_{fo}} \, . \tag{7}$$

Данные, приведенные в таблице, определяют границы применимости формул (5—7).

В заключение приведем основные выводы работы. Предлагаемый метод расчета является наиболее эффективным для быстрого и точного

определения параметров двухмодовых тонкопленочных оптических волноводов по формулам (5—7). Для многомодовых волноводов с $M \ge 2$ результаты расчета позволяют сделать практические рекомендации. Быстрая оценка параметров n_f , n_s и h многомодовых волноводов также проводится с помощью формул (5), (6) и (7), тогда как для более точного расчета

Точные значения параметров тонкопленочных волноводов (n_f, n_s, h)	Эффективные показа- тели преломления (n _m)	Значения параметров волноводов, рассчитан- ные по методу данной работы
n _f =1,83000	n ₀ =1,82191	$n_f = 1,83003$
n _s =1,79000	$n_1 = 1,7991$	$n_s = 1,79083$
h=1,50000		h=1,49334
$n_f = 1.83034$	$n_0 = 1,82584$	$n_f = 1.83036$
$n_s = 1,78561$	n ₁ =1,81253	$n_s = 1,78702$
h=2,14700	n ₂ =1,79164	h=2,13527

этих параметров целесообразно предложить следующую процедуру: параметр n_j определить по формуле (5) настоящей работы, а расчет параметров n_s и h проводить методом последовательных приближений, описанный в работе [1].

ЛИТЕРАТУРА

- 1. Арутюнян Э. А., Галоян С. Х., Полосян С. П. Письма в ЖТФ, 14, 1698 (1988).
- 2. Интегральная оптика / Под ред. Т. Тамира, М., Мир., 1973, 344 с.

113

բԵԿՄԱՆ ՅՈՒՑԻՉԻ ԱՍՏԻՃԱՆԱՅԻՆ ՊՐՈՖԻԼ ՈՒՆԵՑՈՂ ՕՊՏԻԿԱԿԱՆ ԱԼԻՔԱՏԱՐՆԵՐԻ ՊԱՐԱՄԵՏՐԵՐԻ ՀԱՇՎՄԱՆ ՊԱՐԶ ԵՂԱՆԱԿ

Է. Ա. ՀԱՐՈՒԹՑՈՒՆՑԱՆ, Ս. Խ. ԳԱԼՈՑԱՆ, Ս. Պ. ՊՈՂՈՍՑԱՆ

Առաջարկված է հրկմոդանի նրբանինեղ օպտիկական ալիքատարների պարամետրերի Հաշվման պարզ եղանակ, որը բազմամոդ ալիքատարների դեպքում ևս ապահովում է գործնական խնդիրների համար բավարար ճշտունյուն։

A SIMPLE METHOD FOR THE DETERMINATION OF PARAMETERS OF OPTICAL WAVEGUIDES WITH STEP PROFILE OF INDEX OF REFRACTION

E. A. ARUTYUNYAN, S. KH. GALOYAN, S. E. POGOSYAN

A simple method is proposed for the determination of parameters of two-mode thin-layer optical waveguides, which provides sufficient accuracy for practical purposes when applied to such waveguides with large number of resonance modes.