ЛИТЕРАТУРА

- 1. Асатрян Г. Р. и др. ФТТ, 27, 3441 (1985).
- 2. Strocka B., Holst P., Tolksdorf W. Philips J. Res., 33, 186 (1978).
- 3. Shannon R. D. Acta Cryst., A 32, 751 (1976).
- Физико-химические свойства окислов. Под ред. Г. В. Самсонова. Изд Металлургия. М., 1978. с. 154.
- 5. Mateika D., Laurien R., Rusche Ch. I. Cryst. Growth, 56, 677 (1982).

ՏԱՐԱՎԱԼԵՆՏԱՅԻՆ ՏԵՂԱԿԱԼՈՒՄԸ ՑԻՐԿՈՆԻՈՒՄ ՊԱՐՈՒՆԱԿՈՂ ԱԼՅՈՒՄԻՆԱՅԵՆ ՆՌՆԱՔԱՐԵՐՈՒՄ

S. Ի. ԲՈՒԹԱԵՎԱ, Ա. Ս. ԿՈՒԶԱՆՅԱՆ, Ա. Գ. ՊԵՏՐՈՍՅԱՆ, Գ. Հ. ՇԻՐԻՆՅԱՆ

Աշխատանքում Հետաղոտված են պինդ ֆաղաներից ստացված և հալույքից Բրիջմենի եղանակով ստացված $Y_3Al_5O_{12}-Ca^2+$, Zr^{4+} և $Y_3Al_{5O_{12}}-Mg^2+$, Zr^{4+} նռնաքարեր-բյուրեղները։ Համեմատելով էլեմենտար բջջի չափերի չափված և հաշվված արժեքները, ցույց է արված, որ Zr^{4+} իռնները $Y_3Al_5O_{12}-Ca^2+$, Zr^{4+} նռնաքարերում լրացնում են օբտաէղրիկ հանդույցները, իսկ $Y_3Al_{5O_{12}}-Mg^2+$, Zr^{4+} բյուրեղներում՝ դողեկաէդրիկ և օկտաէղրիկ հանդույցները։

COMPLEX SUBSTITUTIONS IN ZIRCONIUM CONTAINING ALUMINIUM GARNETS

T. I. BUTAEVA, A. S. KUZANYAN, A. G. PETROSYAN, G. O. SHIRINYAN-

Garnet crystals of Y_3 Al_5 O_{12} — Ca^2+ , Zr^4+ and Y_3 Al_5 O_{12} — Mg^2+ , Zr^4+ growner from the melt-and prepared by means of solid state reaction method are investigated. It is shown that Zr^4+ ions in Y_3 Al_5 O_{12} — Ca^2+ , Zr^4+ crystals fill the octahedral lattice sites, while in Y_3 Al_5 O_{12} — Mg^2+ , Zr^4+ they fill both the octahedral and decahedral sites.

КРАТКИЕ СООБЩЕНИЯ.

Изв. АН Армянской ССР, Физика, т. 23, выл. 2, 109-111 (1988).

УДК 621.372.632

ГЕНЕРАЦИЯ ПЯТОЙ ГАРМОНИКИ ИЗЛУЧЕНИЯ ПИКОСЕКУНДНОГО ЛАЗЕРА НА $YAlO_3:Nd^3+$ В КРИСТАЛЛЕ КDP

Н. П. ГАРАЯНЦ, К. Б. ПЕТРОСЯН, К. М. ПОХСРАРЯН. НИИ физики конденсированных сред ЕГУ

(Поступила в редакцию 20 февраля 1987 г.)

Показано, что генерацию пятой гармоники дазера на $YAlO_3:Nd^3+$ ($\lambda=1079,6$ нм) можно получить в кристалле KDP при комнатной температуре суммированием частот основного излучения и четвертой гармоники. Приведены значения угла синхронизма, а также угловой и спектральной жирин синхронного взаимодействия.

Для получения мощного когерентного излучения в УФ области спектра представляет интерес каскадная генерация в нелинейных кристаллах высших (третьей, четвертой, пятой...) гармоник излучения неодимовых лаверов с модуляцией добротности и синхронизацией мод [1]. Эффективная генерация третьей и четвертой гармоник обычно осуществляется в широко используемых кристаллах КDP и ADP [2—4]. Однако эти кристаллы не допускают генерацию пятой гармоники (ГПГ) излучения с длиной волны $\lambda \approx 1060$ нм при комнатной температуре, ГПГ излучения лазеров на неодимовом стекле и АИГ: Nd^{3+} в кристаллах КDP и ADP получена в области температур— $70,...,-35^{\circ}$ С [5—8]. Это обстоятельство затрудняет практическое использование вышеуказанных кристаллов для ГПГ.

В работах [9, 10] ГПГ излучения лазера на АИГ: Nd^{3+} осуществлена в кристалле пентабората калия (КВ5), который допускает синхронное взаимодействие при комнатной температуре. Однако по значению нелинейного коэффициента КВ5 значительно уступает КDР и ADP ($d_{\text{KB5}} \approx 0.1 \ d_{\text{ADP}}$) [11].

В настоящей работе сообщается, что при использовании в качестве источника основного излучения лазера на $YAlO_3:Nd^{3+}$ (с длиной волны $\lambda=1079,6$ нм) ГПГ можно получить в кристалле KDP при комнатной температуре.

В таблице приведены угол синхронизма (θ), угловые ($2\Delta\theta$) и спектральные ($2\Delta\lambda$) ширины синхронизма для ГПГ излучения с длиной волны $\lambda_{\infty}=1079,6$ нм в кристаллах КВ5 и КDР, а также значения эффективного нелинейного коэффициента ($d_{s\varphi\varphi}$) и пропускания образцов этих кристаллов длиной 1 см (T), измеренные на длине волны $\lambda_{5\omega}=215,9$ нм. Из приведенной таблицы следует, что хотя по прозрачности КDР несколько уступает КВ5, но по значению эффективной нелинейности он почти на порядок превосходит КВ5 и обладает большими ширинами синхронизма.

Tаблица Угол синхронизма (θ), угловая ($2\Delta\theta$) и спектральная ($2\Delta\lambda$) ширины синхронизма, эффективный нелинейный коэффициент ($d_{s\phi\phi}$) для ГПГ и пропускание КВ5 и КDР на длине волны $\lambda_{5\omega}=215.9$ нм (длина кристалла — 1 см).

Кристалл	Ço	20Д, мин	2Δλ, Å	d _{sφφ} , CGSE	T, %
КВ5	50,4*	1,2	1,8	0,7.10-10	77
KDP	84	6	3	1,03.10-9	74

^{*} Угол синхрониэма отсчитывается от оси а.

В качестве источника основного излучения использовался лазер на YA/O_3 : Nd^{3+} , работающий в режиме пассивной синхронизации мод. Перед каскадами преобразования частоты параметры основного излучения были следующими: длина волны $\lambda_{\omega} = 1079,6$ нм, число импульсов в цуге—12—15, общая энергия \sim 12 мДж, средняя длительность \sim 130 пс, спек-

тральная ширина $\sim 0.2~{\rm cm}^{-1}$, расходимость—1 мрад. ГПГ осуществлялась путем суммирования частот основного излучения и четвертой гармоники. Все нелинейные преобразования осуществлялись в кристаллах КDР (тип взаимодействия оо-е). Энергия излучения пятой гармоники составила $\sim 25~{\rm Mk}\,\Lambda$ ж.

Применение высокоэнергетических одиночных импульсов, уменьшение расходимости основного излучения, а также оптимизация длин используемых кристаллов позволят, по-видимому, существенно увеличить эффективность преобразования в пятую гармонику.

В заключение отметим, что в работе [12] осуществлена эффективная $\Gamma\Pi i$ излучения лазера на $AM\Gamma: Nd^{3+}$ в мочевине. Однако проблема выращивания качественных кристаллов мочевины на сегодняшний деньеще не получила своего решения.

ЛИТЕРАТУРА

- 1. Справочник по лазерам. Под ред. А. М. Прохорова. Изд. Советское радио, М., 1978, т. 11, с. 313.
- 2. Reintjes J., Eckhardt R. C. Appl. Phys. Lett., 30, 91 (1977).
- 3. Seka W. et al. Opt. Commun., 34, 463 (1980).
- 4. Волосов В. Д. и др. Письма в ЖЭТФ, 19, 38 (1974).
- Ахманов А. Г. и др. Письма в ЖЭТФ, 10, 244 (1969).
- 6. Massey G. A., Jones M. D., Johnes J. C. IEEE, OE-14, 527 (1978).
- 7. Jones M. D., Massey G. A. IEEE, QE-15, 204 (1979).
- 8. Massey G. A. Appl. Phys. Lett. 24, 371 (1974).
- 9. Kato K. Opt. Commun., 19, 332 (1976).
- 10. Аругюнян А. Г. и др. Письма в ЖЭТФ, 6, 277 (1980).
- 11. Dewey H. J. IEEE, QE-12, 303 (1976).
- 12. Kato K. IEEE, QE-16, 810 (1980).

ՊԻԿՈՎԱՅՐԿՅԱՆԱՅԻՆ YA1O₃, ND³+ ԼԱԶԵՐԻ ՃԱՌԱԳԱՅ**Թ**ՄԱՆ ՀԻՆԳԵՐՈՐԳ ՀԱՐՄՈՆԻԿԻ ԳԵՆԵՐԱՑԻԱՆ *KDP* ԲՅՈՒՐԵՂՈՒՄ

Ն. Պ. ԳԱՐԱՅԱՆՑ, Կ. P. ՊԵՏՐՈՍՅԱՆ, Կ. Մ. ՓՈԽՍՐԱՐՅԱՆ

Ցույց է արված, որ YAlO₃։ Nd³+ լազնրի ճառագայիման հինդերորդ հարմոնիկի գններաչիան հնարավոր է ստանալ KDP բյուրեղում սենյակային ջերմաստիճանում գումարելով հիմնահան և չորրորդ հարմոնիկի հաճախականությունները։ Բերված են սինխրոնիզմի անկյան, ինչպես նաև սինխրոն փոխազդեցության անկյունային և սպեկտրալ լայնությունների արժեջները։

GENERATION OF THE FIFTH HARMONIC OF PICOSECOND YAIO₃: Nd³⁺ LASER RADIATION IN KDP CRYSTAL

N. P. GARAYANTS, K. B. PETROSYAN, K. M. POKHSRARYAN

The generation of the fifth harmonic of $YAlO_3:Nd^3+$ laser ($\lambda=1079.6~\text{nm}$) can be obtained in KDP crystal at room temperature by mixing the fundamental and the fourth-harmonic radiation. The phase matching angle, the angular and spectral widths of the phase matching are given.