Изв. АН Армянской ССР. Физика, т. 22, вып. 5, 247-252 (1987)

УДК 539.12

ВЛИЯНИЕ ПОГЛОЩЕНИЯ НА СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ ЖЕСТКОГО ОНДУЛЯТОРНОГО ИЗЛУЧЕНИЯ

А. Р. АВАКЯН, Л. А. ГЕВОРГЯН, Н. Н. КОРХМАЗЯН

Ереванский физический институт

(Поступила в редакцию 30 июня 1986 г.)

Получена формула для частотно-углового распределения интенсивности излучения в поглощающей среде. Исследованы спектральные характеристиим излучения в дипольном приближении в жесткой области частот. Показано, что исвависимо от поглощающей способности среды с увеличением частоты излучения возрастание пиков в угловом распределении интенсивности сопровождается уширением спектра. Показано также, что учет поглощения приводит к существенному изменению спектра излучения.

Развитие теоретических исследований в области рентгеновского ондуляторного излучения связано с появлением работы [1], где предлагалось генерировать ультрафиолетовое и более жесткое излучение с помощью электронных пучков современных ускорителей. В последовавших затем работах [2—4] было проведено исследование жесткого излучения в ондуляторе, заполненном диспергирующей средой. Влияние поглощения на спектральные характеристики излучения в этих работах не учитывалось.

В настоящей работе получена формула для спектрального распределения интенсивности ондуляторного излучения в поглощающей среде. Рассмотрена область жестких частот и исследован случай дипольного приближения. Получены спектральные характеристики излучения в зависимости от поглощающей способности среды для тех значений параметров, при которых эффект сужения спектра почти не проявляется.

1. Спектральная интенсивность излучения с учетом поглощения

Пусть релятивистская частица с зарядом e и массой m входит в спиральный ондулятор с длиной L = Nl (l — шаг ондулятора) со скоростью βc под углом β_{\perp} ($\beta_{\perp} \ll 1$) к оси z ондулятора. Поперечная скорость частицы $\beta_{\perp}c = cq/\gamma$ определяется параметром ондулятора $q = eH_0 l/\pi mc^2$ (H_0 — амплитуда магнитного поля) и лоренц-фактором $\gamma = (1 - \beta^2)^{-1/2}$. Для продольной скорости частицы $\beta_z c = c (1 - \gamma_z^{-2})^{1/2} (\gamma_z = \gamma (1 + q^2)^{-1/2})$ имеет место $\beta_z^2 + \beta_z^2 = \beta^2$.

Спектральное распределение интенсивности излучения дается формулой [5]

$$\frac{\dot{a}W}{d\omega dO} = \frac{e^2 \omega^2 |V\bar{\varepsilon}|}{4\pi^2 c} I, \qquad (1)$$

247

$$I = \int_{0}^{t} \int_{0}^{t} \left([\mathbf{n}, \beta(t)], [\mathbf{n}, \beta(t')] \right) \times$$
$$\times \exp \left\{ i \left[\omega \left(t - t' \right) - \mathbf{n} \frac{\omega}{c} \left(\sqrt{\varepsilon} \mathbf{r} \left(t \right) - \sqrt{\varepsilon^{*}} \mathbf{r}(t') \right) \right] \right\} dt dt',$$

а траектория движения частицы определяется выражением [4, 6]

$$\mathbf{r}(t) = -\frac{\beta_{\perp} c}{\Omega} \left(\mathbf{i} \cos \Omega t + \mathbf{j} \sin \Omega t \right) + \mathbf{k} \beta_z c t.$$
(2)

Здесь $\Omega = 2\pi\beta_z c/l - частота ондулятора, <math>c\beta(t) = c (\beta_\perp \sin \Omega t, -\beta_\perp \cos \Omega t, \beta_\perp) - скорость частицы, <math>\mathbf{n} = (\sin \vartheta \cos \varphi, \sin \vartheta \sin \varphi, \cos \vartheta) - единичный вектор в направлении излучения, <math>\sqrt{z} = z_1 - iz_2 - диэлектрическая$ проницаемость среды, $\tau = L/\beta_z c$ - время пробега частицы, $dO = \sin \vartheta d\vartheta d\varphi -$ - элемент телесного угла.

Учитывая симметрию задачи относительно оси z, можно положить $\varphi = 0$. Воспользуемся известным разложением экспоненты по бесселевым функциям и представим экспоненту в подынтегральном выражении (1) в виде двойной суммы

$$\sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \exp\left\{i\left(n-m\right)\pi/2\right\} f_n\left(\alpha\right) f_m^*\left(\alpha\right) \times \left(\exp\left\{i\left[\omega\left(t-t'\right)+\Omega\left(nt-mt'\right)+\beta_z \omega\left(\sqrt{z} t-\sqrt{z^*} t'\right)\cos\vartheta\right]\right\}\right\}.$$
 (3)

Ввиду того, что члены суммы с n = k > m = q являются комплексносопряженными членам с n = q < m = k, после интегрирования выражения (1) по t и t' получим

$$I = \sum_{n < m} 2 \operatorname{Re} \left(e^{i(n-m)\pi/2} \left[f_n(\alpha) f_m^*(\alpha) \times \left(\beta_x^2 \sin^2 \vartheta + \frac{nm}{|\alpha|^2} \beta_\perp^2 \cos^2 \vartheta + \frac{n\alpha^* + m\alpha}{|\alpha_i|^2} \beta_z \beta_\perp \sin \vartheta \cos \vartheta \right) + f_n'(\alpha) (f_m^*(\alpha))' \beta_\perp^2 \right] \frac{Q^2 + 1 - A}{B - C}, \qquad (4)$$

где

$$A = 2Q \cos \left[(\gamma_{\omega} + (n+m) \Omega/2) \tau \right] e^{i(n-m)\Omega\tau/2},$$

$$B = (\gamma_{\omega} + n\Omega) (\gamma_{\omega} + m\Omega) + \beta_z^2 \cos^2 \vartheta c^2 \mu^2/4,$$

$$C = i (n-m) \beta_z \Omega \cos \vartheta c \mu/2.$$

Здесь

$$\eta = 1 - \beta_z \, z_1 \cos \vartheta,$$

$$Q = \exp\left(-\frac{1}{2} L\mu \cos \vartheta\right)$$

$$\alpha = \frac{\omega}{\Omega} \beta_\perp \sqrt{z} \sin \vartheta,$$

248

 $\mu(\omega) = 2 \omega x_2(\omega)/c$ — линейный коэффициент поглощения по интенсивности излучения.

Можно убедиться в том, что в (4) гармоники с n=m дают в N раз больший вклад в излучение, чем остальные. Поэтому членами суммы с $n \neq m$ можно пренебречь. С учетом сказанного вместо (4) будем иметь

$$I = \sum_{n=-\infty}^{+\infty} \left[|f_n(\alpha)|^2 \left(\beta_z^2 \sin^2 \vartheta + \frac{n^2}{|\alpha|^2} \beta_\perp^2 \cos^2 \vartheta - \frac{2n\alpha_1}{|\alpha|^2} \beta_z \beta_\perp \sin \vartheta \cos \vartheta \right) + |f_n'(\alpha)|^2 \beta_\perp^2 \right] \times \\ \times \frac{Q^2 - 2Q \cos\left[(\eta \omega - n\Omega)\tau\right] + 1}{(\eta \omega - n\Omega)^2 + \beta_z^2 \cos^2 \vartheta c^2 \mu^2/4},$$
(5)

где

 $\alpha_1 = \frac{\omega}{\Omega} \beta_\perp \alpha_1 \sin \vartheta.$

Для спектрального распределения интенсивности излучения с единицы пути пробега частицы окончательно получаем

$$\frac{dW}{d\omega dOdz} = \frac{1}{2\Omega} K \sum_{n=-\infty}^{+\infty} f_n \Phi_n, \qquad (6)$$

$$f_n = \frac{\omega^2}{2\Omega^2 \beta_{\perp}^2 \gamma_z^4} \left[|J_n(\alpha)|^2 (\beta_z^2 \sin^2 \vartheta + \frac{n^2 \beta_{\perp}^2 \cos^2 \vartheta}{|\alpha|^2} - \frac{n\alpha_1 \beta_z \beta_{\perp} \sin 2\vartheta}{|\alpha|^2} + |J_n(\alpha)|^2 \beta_z^2 \right], \qquad (7)$$

$$-\frac{n\alpha_1 p_z p_\perp \sin 2\theta}{|\alpha|^2} + |J'_n(\alpha)|^2 \beta_\perp^2 \bigg], \qquad (7)$$

$$\Phi_{n} = \frac{\Omega^{2}}{4\pi^{3}N} \frac{Q^{2} - 2Q\cos\left[(\eta\omega - n\Omega)\tau\right] + 1}{(\eta\omega - n\Omega)^{2} + \beta_{x}^{2}\cos^{2}\vartheta c^{2} \mu^{2}/4},$$
(8)

$$K = \frac{2}{(1+q)^2} \left(\frac{2\pi e q \gamma}{l}\right)^2. \tag{9}$$

2. Жесткая область частот

Для излучения частиц высоких энергий в жесткой области частот ($\vartheta \sim 1/\gamma \ll 1$, $\omega \leq 2n\Omega\gamma_z^2$) можно воспользоваться универсальным представлением $x_1 = 1 - \omega_0^2/2\omega^2$ ($\omega_0 -$ плазменная частота среды). В дальнейшем мы будем рассматривать случай $\beta_z x_1 \cos \vartheta < 1$. При этом в выражении (6) основной вклад в излучение вносят гармоники с положительными номерами. Вводя безразмерную частоту $x = \omega/2n\Omega\gamma_z^2$, параметр $R = \omega_0/\gamma_z \Omega$ и угол $\theta = \gamma_z \vartheta$, вместо (6) получим

$$\frac{dW}{dxdOdz} = K \sum_{n=0}^{+\infty} f_n \Phi_n, \qquad (10)$$

$$f_n = 2x^2 \left[\left| \int_n (\alpha) \right|_1^2 \left(\frac{1+q^2}{q^2} \theta^2 + \frac{n^2}{|\alpha|^2} - \frac{2n\alpha_1 \theta \sqrt{1+q^2}}{q |\alpha|^2} \right) + \left| \int_n (\alpha) \right|_1^2 \right], \quad (11)$$

249

$$\Phi_n = e^{-2N_z} \frac{\operatorname{sh}^2 N z + \sin^2 N Y_n}{\pi N (z^2 + Y_n^2)}.$$
 (12)

Здесь

$$Y_n = \pi [R^2/4x + (1 + \theta^2) x - n],$$

$$z = l\mu/4, \ dO = 2\pi\theta d\theta.$$

Нетрудно заметить, что функция Φ_n для данной частоты x при $\theta_m^2 = (n - R^2/4x - x)/x$ имеет максимум, равный

$$\Phi(\theta_m, x) = e^{-2Nz} \frac{\operatorname{sh}^2 Nz}{\pi Nz^2}$$
(13)

Из условия $\theta_m^2 \ge 0$ следует, что частота излучаемых жестких квантов для *n*-гармоники находится в интервале

$$(n - \sqrt{n^2 - R^2})/2 \le x \le (n + \sqrt{n^2 - R^2})/2,$$
 (14)

причем крайние частоты излучаются под углом $\theta_m = 0$.

Отсюда видно, что при стремлении параметра R к номеру гармоники *n* частотный спектр сужается [2—4], однако нас будет интересовать случай $R \ll n$.

3. Дипольное излучение

В дипольном приближении (q < 1, $\gamma_z \simeq \gamma$) имеет место $|\alpha| \sim q$, и с точностью до малых членов порядка $|\alpha|^2$ в выражении (10) можно ограничиться гармоникой n = 1.

Для частотно-углового распределения интенсивности излучения в жесткой области частот будем иметь

$$\frac{dW}{dxdOdz} = kf_1\Phi_1,\tag{15}$$

$$f_1 = \frac{1}{2} x^2 [1 + (1 - 2x^{6^2})^2], \qquad (16)$$

$$\Phi_1 = e^{-2Nz} \frac{\operatorname{sh}^2 Nz + \sin^2 NY_1}{\pi N \left(z^2 + Y_1^2\right)},$$
(17)

$$k = 2\left(\frac{2\pi e q_{\tilde{1}}}{l}\right)^2. \tag{18}$$

Легко показать, что выражение (15) при $Nz \ll 1$ переходит в известную формулу для вакуумного конечного ондулятора [3]:

$$\frac{dW}{dxdz} = \frac{1}{2} kx^2 [1 + (1 - 2x - R^2/2x)^2].$$
(19)

Нетрудно видеть, что максимумы функции $\int_1 \Phi_1$ в (15) возрастают с увеличением частоты х до значения

 $x_m^2 e^{-2Nz} \sinh^2 Nz/\pi Nz^2$.

Как известно, в жесткой области частот с увеличением частоты поглощающая способность среды уменьшается. В связи с этим имеет смысл рассмотреть ультрафиолетовую область частот, где поглощение ощутимо. Представляет интерес случай $R \ll 1$, когда эффект сужения спектра почти не проявляется.

Рис. 1.

Рис. 2.

Рис. 1. Зависимость массового коэффициента поглощения μ/ρ для воздуха (O = 21%, N = 78%, Ar = 1%) от длины волны λ : $\lambda = 2,33$ нм — К-линия кислорода, $\lambda = 3,1$ нм — К-линия азота, $\lambda = 5$ нм — L_2 -линия аргона.

Рис. 2. Частотно-угловое распределение интенсивности ондуляторного излучения с единицы пути пробега в единицах k в случае разреженного воздуха. Кривые 1, 2, 3 соответствуют трем различным степеням разреженности: $P = 6,5 \cdot 10^{-6}$; $6,5 \cdot 10^{-4}$; $1,3 \cdot 10^{-3}$ атм. Максимумы интенсивности излучения, испускаемого под углами $\theta = 0,16$; 0,57; 0,99, соответствуют значениям частот x = 0,97; 0,76; 0,51.

В качестве среды возьмем воздух ($\omega_0 = 1,04 \cdot 10^{15} \text{ c}^{-1}$). На рис. 1 приведена зависимость массового коэффициента поглощения μ/ρ для воздуха от длины волны λ ($\rho = 1,29 \cdot 10^{-3}$). Пики на графике соответствуют *К*-линии кислорода ($\lambda = 2,33$ нм), *К*-линии азота ($\lambda = 3,1$ нм) и L_2 -линии аргона ($\lambda = 5$ нм).

Рис. 3. Частотное распределение интенсивности ондуляторного излучения с единицы пути пробега в единицах k для значений: $P = 6,5 \cdot 10^{-6}; 6,5 \cdot 10^{-4}; 1,3 \cdot 10^{-3}$ атм. Изломы, наблюдаемые на кривых 2 и 3, объясняются линиями поглощения воздуха. Кривая 1 фактически описывает спектр излучения без учета поглощения.

Рассмотрим пример ондулятора с параметрами N = 20, l = 5 см. Энергия частицы ($\gamma = 4,082 \cdot 10^3$) определяется из условия $\lambda_{\min} = l/2\gamma^2 = 1,5$ нм. С целью удовлетворить условию $R \ll 1$ необходимо заполнить ондуляторразреженным воздухом.

Рассмотрим три случая:

 $P = 6.5 \cdot 10^{-6} \text{ arm}$ (Nz = 1.25 \cdot 10^{-2}, R = 0.0172), $P = 6.5 \cdot 10^{-4} \text{ arm}$ (Nz = 0.125, R = 0.172), $P = 1.3 \cdot 10^{-3} \text{ arm}$ (Nz = 0.25, R = 0.2425).

На рис. 2 приведено угловое распределение интенсивности излучения для следующих значений частот: x = 0.97; 0.76 и 0.51. Кривые 1, 2, 3 соответствуют приведенным выше трем состояниям среды. Поскольку поглощающая способность среды с возрастанием частоты излучения убывает в тех интервалах частот, где отсутствуют линии поглощения, максимумы в угловом распределении интенсивности излучения возрастают.

Частотный спектр приведен на рис. 3. Как следует из рисунка, учет поглощения приводит к существенному изменению спектра излучения.

ЛИТЕРАТУРА

1. Корхмазян Н. А. Изв. АН АрмССР, Физика, 5, 287, 418 (1970).

2. Геворіян Л. А., Корхмазян Н. А. Научное сообщение ЕрФИ-273 (66)-77, 1977

- 3. Геворіян Л. А., Корхмазян Н. А. ЖЭТФ, 76, 1226 (1979).
- 4. Геворгян Л. А., Погосян П. М. Изв. АН АрмССР. Физика, 19, 239 (1984).
- 5. Джексон Дж. Классическая электродинамика. Изд. Мир, М., 1965.
- 6. Алферов Д. Ф., Башмаков Ю. А., Бессонов Е. Г. Труды ФИАН. СССР, 80, 100 (1975).

ԿԼԱՆՄԱՆ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՕՆԴՈՒԼՅԱՏՈՐԱՅԻՆ ԿՈՇՏ ՃԱՌԱԳԱՅԹՄԱՆ ՍՊԵԿՏՐԱԼ ԲՆՈՒԹԱԳՐԵՐԻ ՎՐԱ

2. Ռ. ԱՎԱԳՏԱՆ, Լ. Ա. ԳԵՎՈՐԳՏԱՆ, Ն. Ն. ՂՈՐԽՄԱԶՏԱՆ

կլանող միջավայրում օնդուլյատորային մառագայիման ինտենսիվության հաճախա-անկյունային թաշխման համար ստացված է թանաձև։ Հետաղոտված են դիպոլային ճառագայիմանսպեկտրալ բնութագրերը համախությունների կոշտ տիրույթում։ Յույց է տրված, որ անկախ միջավայրի կլանման ընկալությունից մառագայթման համախության մեծացմանը ղուդահեռ տեղի են ունենում նաև ինտենսիվության անկյունային բաշխման կիղակետերի բարձրացում և սպեկտրի լայնացում։ Յույց է տրված, որ կլանման հաշվառումը բերում է ճառագայթնման, սպեկտրի էական փոփոխության։

THE INFLUENCE OF ABSORPTION ON SPECTRAL. CHARACTERISTICS OF HARD UNDULATOR RADIATION

H. R. AVAKYAN, L. A. GEVORGYAN, N. N. KORKHMAZYAN

A formula describing the frequency-angular distribution of radiation in an absorbing medium is obtained. The spectral characteristics of hard undulator radiation depending on the absorbability of medium are investigated in dipole approximation It is shown that irrespective of the absorbability of the medium, the growth of maxima of the angular distribution of intensity with the increase in the radiation frequency is accompanied by broadening of spectra. It is also shown that consideration of absorption leads to essential variation of radiation spectra.