УДК 531

О ВЛИЯНИИ АКУСТИЧЕСКИХ ВОЛН НА ПАРАМЕТРЫ ПЛАЗМЫ

А. Р. МКРТЧЯН, Г. А. ГАЛЕЧЯН, Э. Г. ДИВАНЯН

Институт прикладных проблем физики АН АрмССР (Поступила в редакцию 25 ноября 1986 г.)

Рассмотрено влияние акустических воли на параметры плазмы. Показано, что продольные ультразвуковые волны, приложенные к однородному плазменному столбу и направленные вдоль электрического поля, вызывают расслоение. Получены зависимости концентрации электронов в уплотненных и разреженных слоях плазмы от величины силы звука. Установлено, что при увеличении силы звука в уплотненных слоях концентрация электронов уменьшается, а в разреженных увеличивается. При постоянной силе звука в плазме повышение давления газа приводит к уменьшению отношения $n_{\rm ep}/n_{\rm ey}$ концентрации электронов в разреженных слоях к плотности электронов в уплотненных слоях, т. е. уменьшение давления газа приводит к возрастанию пространственной модуляции плазмы.

Исследование волновых процессов в плазме представляет значительный научный и практический интерес. Из многообразия процессов взаимодействия волн в плазме малоизученным остается вопрос влияния акустических волн на свойства плазмы. Теоретически некоторые вопросы распространения звуковой волны в плазме рассмотрены в монографии [1].

В настоящей работе рассматривается взаимодействие ультразвуковых волн с плазмой. Показано, что звуковые волны, приложенные к однородному плазменному столбу, вызывают его расслоение. Получены зависимости концентрации электронов в уплотненных и разреженных слоях в плазме от силы звука и давления газа.

Рассмотрим распространение акустических воли вдоль плазменного столба газового разряда. В результате взаимодействия установится слоистый столб с ионизационными волнами, длина которых будет зависеть от частоты звука и природы газа. Параметры плазмы разряда зависят от отношения продольного электрического поля к плотности нейтрального газа E/N.

Вследствие того, что коэффициент ионизации и параметр E/N связаны экспоненциальной зависимостью

$$\frac{\alpha}{P} = A \exp\left(-\frac{BNT}{E}\right) = A \exp\left(-\frac{BP/E}{E}\right), \tag{1}$$

в разреженных слоях частота ионизации газа будет значительно выше, чем в уплотненных слоях, что и приведет к расслоению плазменного столба. Это вызовет большое различие в плотности электронов, возбужденных состояний и др.

Амплитуду звукового давления определим из выражения [2]

$$P = \sqrt{2/\rho v_3},\tag{2}$$

тде J — сила звука, ρ — плотность газа, v_3 — скорость звука в газе. Тогда давление газа в уплотненных и разреженных слоях будет

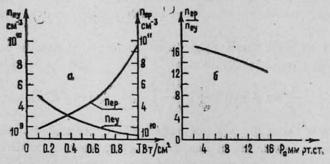
$$P' = P_0 \pm P = P_0 \pm \sqrt{2 f \rho v_3}$$
 (3)

Верхний знак соответствует давлению газа в уплотненных слоях, нижний — в разреженных, $P_{\rm o}$ — давление газа в отсутствие звукового поля.

Концентрацию электронов определим из уравнения баланса заряженных частиц

$$\operatorname{div}\left(D_{a}\operatorname{grad}n_{e}\right)+\gamma_{i}n_{e}-\beta n_{e}n_{+}=0. \tag{4}$$

Эдесь D_a — коэффициент амбиполярной диффузии электронов и ионов, β — коэффициент объемной рекомбинации заряженных частиц (для оценок взято $\beta=10^{-7}$ см 3 /с [3]), v_i — частота ионизации, которая связана с коэффициентом ионизации соотношением $v_i=\alpha w$ [4], w — дрейфовая скорость электронов.


При давлениях газа в разряде $P_0 > 5$ мм рт. ст. диффузией заряженных частиц на стенки трубки по сравнению с их объемной рекомбинацией можно пренебречь. Поэтому из уравнений (1)—(4) получаем

$$n_{e} = \frac{\alpha w}{\beta},$$

$$n_{e} = \frac{A w \left(P_{0} \pm \sqrt{2J\rho v_{3}}\right)}{\beta} \exp\left[-\frac{B(P_{0} \pm \sqrt{2J\rho v_{3}})}{E}\right], \quad (5)$$

где A и B — эмпирические коэффициенты, величины которых приведены в [4]. Значения дрейфовой скорости w в зависимости от E/P также приведены в]4].

Для определения E/P нами были выполнены экспериментальные измерения в разрядной трубке диаметром 40 мм. Электроды были вынесены в боковые отростки. Длина плазменного столба в трубке составляла $26 \, \mathrm{cm}$, разряд—стационарный, в потоке гелия с $\upsilon = 0.26 \, \mathrm{m/c}$. Получено, что при $P_0 = 7.6 \, \mathrm{mm}$ рт. ст. $E = 18 \, \mathrm{B/cm}$, при $P_0 = 15 \, \mathrm{mm}$ рт. ст. $E = 30 \, \mathrm{B/cm}$ при величине разрядного тока $40 \, \mathrm{mA}$.

На рисунке (a) представлены зависимости концентраций электронов в уплотненных слоях плазмы $(n_{\rm ey})$ и в разреженных слоях $(n_{\rm ep})$ от силы звука J при давлении гелия $P_{\rm o}=7.5$ мм рт. ст., из которых следует, что при всех значениях J концентрация электронов в уплотненных слоях мень-

ше, чем в разреженных. При повышении силы звука плотность электронов в уплотнениых слоях уменьшается, а в разреженных увеличивается. Отношение $n_{\rm sp}/n_{\rm sy}$ концентрации электронов в разреженных слоях к плотности электронов в уплотненных слоях при $J=0.1\,{\rm Br/cm^2}$ составляет 4, а при $J=1\,{\rm Br/cm^2}-70$, т. е. при постоянном давлении с ростом силы звука глубина модуляции плазмы повышается. На рисунке (б) приведена зависимость отношения $n_{\rm ep}/n_{\rm sy}$ от давления гелия при постоянной силе звука $P=0.5\,{\rm Br/cm^2}$, из которой следует, что повышение давления газа приводит к уменьшению отношения $n_{\rm ep}/n_{\rm sy}$. Это вызвано тем обстоятельством, что при повышении давления $P_{\rm sym}$ отношение звукового давления $P_{\rm sym}$ уменьшается, что следует из формулы (2).

ЛИТЕРАТУРА

- 1. Арушмович Л. А., Саздесе Р. Э. Физика плазмы для физиков. Атомиздат, М., 1979.
- .2. Бергман Л. Ультразвук. Изд. ИЛ, М., 1956.

11

3

- 3. Елецкий А. В., Смирнов Б. М. УФН, 136, 25 (1982).
- 4. Браун С. Элементарные процессы в плазме газового разряда. Госатомиздат, М., 1961.

ՊԼԱԶՄԱՅԻ ՊԱՐԱՄԵՏՐԵՐԻ ՎՐԱ ԱԿՈՒՍՏԻԿ ԱԼԻՔՆԵՐԻ ԱԶԴԵՑՈՒԹՅԱՆ ՄԱՍԻՆ

U. A. 1447823UL, S. U. SULDEBUL, E. S. SPIULBUL

Դիտարկվում է գերձայնային ալիջների փոխազդեցությունը պլազմայի հետ։ Ցույց է արված, որ համասեռ պլազմային սյունին կիրառված ակուստիկ ալիջները առաջ են բերում Նրա շերտավորում։ Ստացված է պլազմայում խտացված և հոսրացված շերտերի էլնկտրոնների փոնցենտրացիայի կախվածությունը ձայնի ուժից և գազի ճնշումից։

ON THE EFFECT OF ACOUSTIC WAVES ON PLASMA PARAMETERS

A. R. MKRTCHYAN, G. A. GALECHYAN, E. G. DIVANYAN

The interaction of ultrasonic waves with plasma has been considered. It was shown that the acoustic waves directed along the electric field in a homogeneous plasma column caused its lamination. The electron concentration in discharged and condensed plasma layers was obtained as a function of sound power and gas pressure.