УДК 539.12

1

РАСПРЕДЕЛЕНИЕ ПО ПОПЕРЕЧНОМУ ИМПУЛЬСУ СЕЧЕНИЯ ПРОЦЕССА e⁺e⁻→ q q g ДЛЯ ТЯЖЕЛЫХ КВАРКОВ

Ю. Г. ШАХНАЗАРЯН

Ереванский физический институт

(Поступила в редакцию 22 января 1986 г.)

В рамках КХД исследовано влияние учета массы тяжелых кварков на распределение по величине T (импульсу наиболее энергичного партона) и поперечному относительно оси T импульсу x_{\perp} каждого из двух других партонов в процессе $e^+e^- \rightarrow q \ \overline{q} \ g$, ответственном за трехструйные события в e^+e^- -аннигиляции. Показано, что масса кварка оказывает заметное влияние на предсказания теории. Учет массы приводит не только к значительному расширению области изменения x_{\perp} по сравнению с безмассовым случаем и смещению этой области в сторону меньших значений x_{\perp} , но и к появлению структур у кривых, описывающих зависимость $d^2\sigma/dTdz_{\perp}$ от x_{\perp} .

Известно, что образование адронов в e^+e^- аннигиляции при высоких энергиях носит струйный характер. Согласно современным представлениям первоначально рождается кварк-антикварковая пара, которая затем фрагментирует в адроны, летящие в противоположно направленные стороны в виде двух струй. Однако при достаточно высоких энергиях в e^+e^- аннигиляции наблюдаются, хотя и не столь часто, события с большим поперечным импульсом. Они связываются с тормозным излучением жесткого глююна в процессе $e^+e^- \rightarrow q\bar{q}g$. Глюон также фрагментирует в адроны, и в результате на эксперименте наблюдается планарное трехструйное событие. Для описания указанного процесса в рамках КХД и сравнения теории с экспериментом сбычно используются так называемые инфракрасно-стабильные переменные. К их числу относятся, в частности, максимально направленный импульс T [1, 2] и поперечный относительно оси **Т** импульс x. [3] каждой из двух других струй.

В работе [4] в первом порядке КХД было вычислено дифференциальное по переменным T и x_{\perp} сечение трехструйного процесса $e^+e^- \rightarrow q\bar{q}g$. При этом масса кварка не учитывалась. Поскольку при достижимых на современных накопителях энергиях масса с- и b-кварков, а тем более t-кварка может заметно изменить результаты, в настоящей работе проводится аналогичное рассмотрение для тяжелых кварков. Такое обобщение не является тривиальным и связано с заметными осложнениями.

Дифференциальное сечение интересующего нас процесса в случае тяжелых кварков и неполяризованных начальных частиц после суммирования по цвету и интегрирования по углам имеет вид (см., например, [5—8])

$$\frac{d^2\sigma}{dx'_{1dx'_{2}}} = \frac{8\alpha^2 \alpha_s Q^2}{3s} \rho(x'_1, x'_2, x_3),$$
(1)

$$\rho(\mathbf{x}'_{1}, \mathbf{x}'_{2}, \mathbf{x}_{3}) \equiv \frac{1}{(1 - \mathbf{x}'_{1})(1 - \mathbf{x}'_{2})} \left\{ \mathbf{x}'_{1}^{*} + \mathbf{x}'_{2}^{*} + \eta \left[1 - \mathbf{x}_{3} - \frac{1}{2} \left(1 + \frac{\eta}{2} \right) \cdot \frac{\mathbf{x}_{3}^{2}}{(1 - \mathbf{x}'_{1})(1 - \mathbf{x}'_{2})} \right] \right\}.$$

Здесь s — квадрат полной энергии реакции, $\eta = 4m^2/s$, m и Q — масса и заряд (в единицах е) кварка. Переменные $\mathbf{x}_n = 2\mathbf{p}_n/\sqrt{s}$ и $\mathbf{x}'_n = 2E_n/\sqrt{s}$ определяют безразмерный импульс и безразмерную энергию *n*-партона (n = 1, 2, 3 соответственно для q, q, g) и связаны соотношениями

$$x_{1,2} = (x_{1,2} + \eta)^{-1}, x_3 - x_3.$$

Положив $x_i \ge x_j \ge x_k$, определим переменные, через которые необходимо выразить исходное сечение (1):

$$T = \max(x_1, x_2, x_3) = \max(x_i, x_j, x_k) = x_i,$$

$$= x_j \sin \theta_{ij} = x_k \sin \theta_{ik} = \frac{1}{x_i} [4(1 - x_i')(1 - x_j')(1 - x_k') - \eta x_3^2]^{1/2}.$$
(2)

Для перехода в (1) к этим переменным разобьем фазовое пространство на области [8]

I.
$$x_1 \ge x_2 \ge x_3$$
, II. $x_1 \ge x_3 \ge x_2$, III. $x_3 \ge x_1 \ge x_2$. (3)

В области I при значениях $T_O \leqslant T \leqslant T_B x_3$ меняется в пределах $2(1-T') \leqslant x_3 \leqslant [(2-T')^2-\eta]/2(2-T')$, а для остальных значений $T_B \leqslant T \leqslant T_A - в$ интервале $2(1-T') \leqslant x_3 \leqslant 2(1-T')/(2-T-T')$, где $T_O = -2/3 + 4(1-3\eta/4)^{1/2}/3$ есть минимальное для всех областей значение переменной T, $T_A = (1-\eta)^{1/2}$, $T_B \simeq 1 - (3\eta/4)(1+\eta^2/4)$ (точное значение T_B приведено в указанной работе [8] и имеет довольно сложный вид).

В переменных (T, x_{\perp}) граница $x_3 = 2(1 - T')$ определяется выражением

$$x_{\perp} = \frac{2(1-T')}{T} (2T'-1-\eta)^{1/2} \equiv x_{\perp}^{(1)}$$
(4)

(кривая 1 на рис. 1), граница $x_3 = [(2 - T')^2 - \eta]/2(2 - T') - \eta$

$$\mathbf{x}_{\perp} = \left[1 - T' - \frac{\eta}{4} + \frac{\eta^2}{4(2 - T')^2}\right]^{1/2} \equiv \mathbf{x}_{\perp}^{(2)}$$
(5)

(кривая 2), а на границе $x_3 = 2(1 - T')/(2 - T - T')$ имеем $x_{\perp} = 0$. Приведенные на рис. 1 сплошные кривые соответствуют значению $\eta = 0,1$, которое этот параметр принимает, например, для *b*-кварка при $\sqrt{s} \simeq 30$ ГъВ.

В отличие от безмассового случая, когда наибольшее и наименьшее значения поперечный импульс принимает на границах допустимого фазового пространства [4], при учете массы кварка х достигает максимума

x,

$$x_{\perp}^{\max} = \frac{2(1-T')}{[4(1-T')+\eta]^{1/2}} \equiv x_{\perp}^{(3)}$$
(6)

(кривая 3 на рис. 1) при $x_3 = 2(1 - T')(2 - T')/[4(1 - T') + \eta].$

Нетрудно проверить, что максимальное значение (6) в области I при фиксированном T поперечный импульс может принимать не для всех T, а таких, что

$$3T'-2-\eta \ge 0, \ T' \ge \frac{2+\eta}{3}, \ T \ge \frac{1}{3}[(4-\eta)(1-\eta)]^{1/2} \equiv T_K.$$
 (7)

Таким образом, в переменных (*T*, x_⊥) фазовое пространство в области I определяется соотношениями

$$T_{O} \leqslant T \leqslant T_{K}, \quad x_{\perp}^{(2)} \leqslant x_{\perp} \leqslant x_{\perp}^{(1)},$$

$$T_{K} \leqslant T \leqslant T_{B}, \quad x_{\perp}^{(1)} \leqslant x_{\perp} \leqslant x_{\perp}^{(3)}, \quad x_{\perp}^{(2)} \leqslant x_{\perp} \leqslant x_{\perp}^{(3)},$$

$$T_{B} \leqslant T \leqslant T_{A}, \quad x_{\perp}^{(1)} \leqslant x_{\perp} \leqslant x_{\perp}^{(3)}, \quad 0 \leqslant x_{\perp} \leqslant x_{\perp}^{(3)}.$$
(8)

Как следует из рис. 1, учет массы кварка сильно видоизменяет фазовое пространство, которое в безмассовом случае для всех трех областей (3) имеет вид, изображенный пунктирными кривыми. Нетрудно видеть, что положив в (8) $\eta = 0$, получим корректное поведение в безмассовом случае.

Рис. 1. Фазовое пространство рассматриваемого процесса в переменных (T, x_{\downarrow}) при значении массового параметра $\eta = 0, 1$. Пунктиром изображено фазовое пространство в случае $\eta = 0$, которое одинаково для всех трех областей I—III.

В области II переменная T меняется в пределах $T_0 \leqslant T \leqslant T_B$, причем в интервале $T_0 \leqslant T \leqslant T_C$ область допустимых значений x_3 есть $[(2 - T')^2 - \eta]/2 (2 - T') \leqslant x_3 \leqslant T$, а в интервале $T_C \leqslant T \leqslant T_B - [(2 - T')^2 - \eta]/2 (2 - T') \leqslant x_3 \leqslant 2 (1 - T')/(2 - T - T');$ $T_C = 2 (1 - \sqrt{\eta}) \times (2 - \sqrt{\eta})^{-1}$. В переменных (T, x_1) нижняя граница изменения x_3 определяется выражением (5) (кривая 2 на рис. 1), граница $x_3 = T -$ выражением

$$\mathbf{x}_{\perp} = \frac{1}{T} \left[4 \left(1 - T' \right) \left(1 - T \right) \left(T + T' - 1 \right) - \eta T^2 \right]^{1/2} \equiv \mathbf{x}_{\perp}^{(4)}$$
(9)

(кривая 4), а на другой верхней границе по-прежнему х₁ = 0. Максимум (6) в области II не достигается и поперечный импульс принимает наибольшее и наименьшее значения на границах области.

Таким образом, фазовое пространство в области II определяется соотношениями

$$T_{O} \leqslant T \leqslant T_{C}, \ x_{\perp}^{(4)} \leqslant x_{\perp} \leqslant x_{\perp}^{(2)},$$
 (10)

$$T_C \leqslant T \leqslant T_B, \ 0 \leqslant \mathbf{x}_\perp \leqslant \mathbf{x}_\perp^{(2)}$$

и ограничивается кривыми 2, 4 и осью абсцисс между точками В и С (см. рис. 1).

В области III свое максимальное значение

$$x_{\perp}^{\max} = (1 - T - \eta)^{1/2} \equiv x_{\perp}^{(5)}$$
(11)

(кривая 5 на рис. 1) при фиксированном T функция $x_{\perp}(x'_1)$ принимает в точке $x'_1 = 1 - T/2$. Поскольку x'_1 теперь меняется в пределах $1 - T/2 \leqslant x'_1 \leqslant T'$, когда $T_O \leqslant T \lt T_C$, и в пределах $1 - T/2 \leqslant x'_1 \leqslant 1 - T/2 + [1 - \eta/(1 - T)]^{1/2}$ T/2, когда $T_C \leqslant T \lt T_D$, где $T_D = 1 - \eta$, то максимальное значение (11) достигается на нижней границе области, а наименьшее - (9) или $x_{\perp} = 0$ в зависимости от величины $T - \text{соот$ $ветственно на верхних границах } x'_1 = T'$ и $x'_1 = 1 - T/2 + [1 - \eta/(1 - T)]^{1/2}$

$$T_{O} \leqslant T \leqslant T_{C}, \ \mathbf{x}_{\perp}^{(4)} \leqslant \mathbf{x}_{\perp} \leqslant \mathbf{x}_{\perp}^{(5)},$$

$$T_{C} \leqslant T \leqslant T_{D}, \ 0 \leqslant \mathbf{x}_{\perp} \leqslant \mathbf{x}_{\perp}^{(5)}.$$
(12)

Таким образом, фазовое пространство в области III ограничено кривыми 4, 5 и осью $x_{\perp} = 0$ между точками С и D (см. рис. 1).

Перейдем теперь в сечении (1) к переменным T и х. В областях I и II имеем

$$\begin{aligned} \mathbf{x}_{2}^{\prime\pm} &= 2 - T' - \mathbf{x}_{3}^{\mp}, \ \mathbf{x}_{3}^{\pm} = \frac{2(1 - T')}{4(1 - T') + \eta} \ (2 - T' \pm Ty_{1}), \\ y_{1} &\equiv \left[1 - \frac{4(1 - T') + \eta}{4(1 - T')^{2}} \mathbf{x}_{1}^{2}\right]^{1/2}, \end{aligned}$$
(13)

1 1

$$dx'_{1}dx'_{2} = \frac{T'x_{\perp}}{2 T'(1-T')y_{1}} dT dx_{\perp},$$

а в области III —

$$x_{1}^{'\pm} = x_{2}^{'\pm} = 1 - \frac{T}{2} (1 \mp y_{2}), \quad y_{2} \equiv \left(1 - \frac{x_{\perp}^{2} + \eta}{1 - T}\right)^{1/2},$$

$$Tx_{\perp}$$
(14)

$$dx'_{1} dx'_{2} = dx_{3} dx'_{1} = \frac{Tx_{\perp}}{2(1-T)y_{2}} dT dx_{\perp}$$

В силу закона сохранения энергии значениям x_2^{\pm} соответствуют x_3^{\mp} для первых двух областей. Нетрудно видеть, что $x_2^{\pm} > x_3^{-}$ всегда, независимо от T и x_{\perp} , тогда как условие $x_3^{\pm} > x_2^{-}$ выполняется лишь для значений $x_{\perp} < x_{\perp}^{(2)}$. Поэтому в области I, где по определению (3) $x_2 \ge x_3$, необходимо наряду с распределением $\rho(T', x_2^{+}, x_3^{-})$ рассмотреть для значений $x_{\perp} \ge x_{\perp}^{(2)}$ также распределение $\rho(T', x_2^{-}, x_3^{+})$. Поскольку это есть две ветви одной функции, они пересекаются в точке

 $x'_{2}^{+} = x'_{2}^{-}$ $(x_{3}^{-} = x_{3}^{+})$, в которой $y_{1} = 0$, что реализуется при значении $x_{\perp} = x_{\perp}^{(3)}$. При $\eta = 0$ в этой точке происходит переход от области I к области II. При учете массы кварка такой переход, который должен иметь место в точке $x_{2} = x_{3}$, осуществляется при значении $x_{\perp} = x^{(2)}$.

Нормируя сечение (1) на полное сечение $\sigma_{\mu\mu} = 4\pi a^2/3s$ процесса $e^+e^- \rightarrow \mu^+\mu^-$ и учитывая области, получающиеся из (3) с помощью замен $x_1 = x_2$, для областей I и II интересующее нас дифференциальное сечение запишем в виде

$$\frac{1}{\sigma_{\mu\mu}} \frac{d^2 \sigma_{\rm I,II}}{dT dx_{\perp}} = 2 \frac{\alpha_s}{\pi} Q^2 \frac{T^2 x_{\perp}}{T' (1 - T') y_1} \rho_{\rm I,II}.$$
(15)

Для области I

 $\rho_1 = \rho(T', x_2'^+, x_3) + \rho(T', x_2'^-, x_3^+),$

причем $\rho(T', x_2'^+, x_3^-)$ описывает распределение для значений

$$T_{K} \leqslant T \leqslant T_{A}, \ x_{\perp}^{(1)} \leqslant x_{\perp} \leqslant x_{\perp}^{(3)}, \tag{16}$$

а $\rho(T', x_2'^-, x_3^+) - для значений$

$$T_{O} \leqslant T \leqslant T_{K}, \ \mathbf{x}_{\perp}^{(2)} \leqslant \mathbf{x}_{\perp} \leqslant \mathbf{x}_{\perp}^{(1)},$$

$$T_{K} \leqslant T \leqslant T_{B}, \ \mathbf{x}_{\perp}^{(2)} \leqslant \mathbf{x}_{\perp} \leqslant \mathbf{x}_{\perp}^{(3)},$$

$$T_{B} \leqslant T \leqslant T_{A}, \ 0 \leqslant \mathbf{x}_{\perp} \leqslant \mathbf{x}_{\perp}^{(3)}.$$
(17)

В области II, где по определению (3) $x_3 \ge x_2$, в силу сказанного выше имеем

$$\rho_{11} = \rho(T', x_2'^{-}, x_3^{+})$$

для всех допустимых значений (10).

Таким образом, часть событий, описываемых функцией $\rho(T', x_2'^-, x_3^+)$, для которых $x_{\perp} \ge x_{\perp}^{(2)}$, как и все события, описываемые функцией ей $\rho(T', x_2'^+, x_3^-)$, относятся к области І. В результате при значении $x_{\perp} = x_{\perp}^{(2)}$ сечение в области II обрывается, а сечение в области I претерпевает скачок, на рис. 2 отмеченный пунктиром. Если при $\eta \neq 0$ функция $\rho(T', x_2'^-, x_3^+)$ описывала бы только события в области II, то кривые I и II на рис. 2 пересекались бы в точке $x_{\perp} = x_{\perp}^{(3)}(\eta)$, как это имеет место при $\eta = 0$.

Дифференциальное сечение в области III имеет вид

$$\frac{1}{\sigma_{\mu\mu}} \frac{d^2 \sigma_{III}}{dT dx_{\perp}} = 2 \frac{\alpha_s}{\pi} Q^2 \frac{T x_{\perp}}{(1-T) y_2} \rho_{III}, \qquad (18)$$

где

 $\rho_{111} = \rho(x_1^{'+}, x_2^{'-}, T)$

для всех значений (12).

На границе $x_1 = x_3 = 7$ областей II и III, которой соответствует значение $x_{\perp} = x_{\perp}^{(4)}$, имеет место $\rho(T', x_2'^-, x_3^+) = \rho(x_1'^+, x_2'^-, T)$. Однако из-за различия фазовых объемов областей II и III соответствующие кривые на рис. 2 при $\eta = 0,1$ не пересекаются. Для иллюстрации того, к каким количественным изменениям приводит учет массы кварков, на рис. 2 при некоторых допустимых значениях параметра η приведены кривые зависимости величины $(4 \alpha_s Q^2 \sigma_{p|l}/\pi)^{-1} d^2 \sigma / dx_\perp dy$ от x_\perp в областях I-III для конкретного значения T = 0,8. События с таким значением T могут быть инициированы как легкими, так и тяжелыми кварками, поэтому на этом примере можно отчетливо видеть степень влияния учета массы кварков на предсказания теории.

Рис. 2. Зависимость нормированного на величину $4z_s Q^2 \sigma_{\mu\mu}/\pi$ дифференциального сечения $d^2 \sigma / dx_\perp dy$ в трех различных областях I—III от поперечного импульса в случае T = 0.8 при некоторых значениях массового параметра р.

Как следует из рис. 2, с ростом у кривые для всех областей I — - III смещаются влево, к меньшим значениям x_1 . Если при $\eta = 0$ во всех областях поперечный импульс меняется в одних и тех же пределах, то при $\eta \neq 0$ это не так, причем области II и III заметно расширяются по x, (см. также рис. 1). Изломы на кривых в области I при $\eta \neq 0$, как уже говорилось выше, связаны с тем, что, начиная с определенного при данном η значения поперечного импульса ($x_{\perp} \gg x_{\perp}^{(2)} \simeq$ $\simeq 0,342$ при $\eta = 0,1$ и $x_{,} \ge x_{,2}^{(2)} \simeq 0,205$ при $\eta = 0,2)$, часть событий, которые при меньших значениях х, попадали в область II, теперь дают вклад в область І. Из приведенных на рис. 2 кривых следует, что при $\eta = 0,1$ имеется довольно широкая область значений поперечного импульса $(0,124 \simeq x^{(4)} \leqslant x_1 \leqslant x^{(1)} \simeq 0,275)$, в которой глюонная струя может быть либо промежуточной по энергии относительно q, q-струй, либо наиболее энергичной. По мере приближения к верхней границе 7 сначала исчезают события в области III, а затем и в области II. Так, в рассматриваемом случае T=0.8 при $\eta=0.2$ уже нет со бытий в области III, а при $\eta \simeq 0,26 - и$ в области II.

С помощью выражений (15)—(18) нетрудно получить суммарное распределение по переменным T и х , для интересующего нас процесса:

$$\frac{1}{\sigma_{\rho\mu}} \frac{d^{2}\sigma}{dTdx_{\perp}} = 2 \frac{a_{s}}{\pi} Q^{2} T x_{\perp} \left\{ \frac{T}{T'(1-T')y_{1}} \left[\rho(T', x_{2}^{'+}, x_{3}^{-}) + \frac{1}{(1-T)y_{2}} \rho(x_{1}^{'+}, x_{2}^{'-}, T) \right] + \frac{1}{(1-T)y_{2}} \rho(x_{1}^{'+}, x_{2}^{'-}, T) \right\}, \quad (19)$$

где функция $\rho(T', x'_2, x'_3)$ дает вклад в суммарное распределение для значений

$$T_{O} \leqslant T \leqslant T_{K}, \quad \mathbf{x}_{\perp}^{(4)} \leqslant \mathbf{x}_{\perp} \leqslant \mathbf{x}_{\perp}^{(1)},$$

$$T_{K} \leqslant T \leqslant T_{C}, \quad \mathbf{x}_{\perp}^{(4)} \leqslant \mathbf{x}_{\perp} \leqslant \mathbf{x}_{\perp}^{(3)},$$

$$T_{C} \leqslant T \leqslant T_{A}, \quad 0 \leqslant \mathbf{x}_{\perp} \leqslant \mathbf{x}_{\perp}^{(3)},$$

(20)

а $\rho(T', x_2'^+, x_3^-)$ и $\rho(x_1'^+, x_2'^-, T)$ — соответственно для значений (16) и (12).

На рис. З для рассмотренного случая T = 0.8 представлена зависимость дифференциального сечения (19) от поперечного импульса при некоторых допустимых значениях параметра η . Из вида приведенных кри-

Рис. 3. Зависимость нормированного на величину $4\alpha_s Q^2 \sigma_{\mu\mu} / \pi$ дифференциального сечения $d^2 \sigma / dT dx_{\perp}$ рассматриваемого процесса от поперечного импульса при тех же вначениях параметров, что и на рис. 2.

вых следует, что учет массы тяжелых кварков заметно меняет картину. Кроме значительного расширения областей изменения x_{\perp} при $\eta \neq 0$ по сравнению с безмассовым случаем и смещения этих областей в сторону

меньших значений поперечного импульса, бросается в глаза появление структур у кривых.

Разберем подробнее случай $\eta = 0,1$. В интервале $0,124 \simeq x_{\perp}^{(4)} \leq \leq x_{\perp} \leq x_{\perp}^{(1)} \simeq 0,275$, как следует из рис. 2, суммарное распределение бусловлено только событиями из областей II и III. Начиная с $x_{\perp} \simeq 0,275$ становятся возможными события в области I, в результате чего сечение резко возрастает (почти на порядок). Структура при $x_{\perp} = x_{\perp}^{(3)} \simeq 0,316$ имеет кинематическую природу и обусловлена тем, что при приближении к верхней границе области III $(x_{\perp} \to x_{\perp}^{(5)})$ в знаменателе выражения (19) $y_2 \to 0$ (интегрируемая корневая особенность, связанная с фазовым объемом в области III). Начиная с этого значения суммарное распределение обусловлено вкладом областей I и II, а со значения $x_{\perp} = x_{\perp}^{(2)} \simeq 0,342$ — вкладом только области I. На границе области I $(x_{\perp} \to x_{\perp}^{(3)})$ опять имеется связанная с фазовым объемом корневая особенность $(y_1 \to 0)$, приводящая к неограниченному росту сечения.

При $\eta = 0,2$, в отличие от случая $\eta = 0,1$, событий в области III вообще нет, и поэтому соответствующая структура $(y_2 \rightarrow 0)$ не проявляется. При $\eta = 0$, как уже отмечалось, интервал изменения x_{\perp} один и тот же для всех сбластей и, кроме того, $y_1 = y_2$, т. е. имеется единственная корневая особенность на общей границе областей. По этой причине кривая распределения в этом случае является гладкой.

Поскольку массы тяжелых кварков заметно отличаются друг от друга, то при заданной энергии реакции соответствующие им значения параметра η , который зависит от массы квадратично, будут различаться довольно сильно. Учитывая также то, что при данном T область допустимых значений x_{\perp} существенным образом зависит от величины η , можно думать, что измерение T и x_{\perp} позволит судить об аромате кварка и антикварка, ответственных за данное событие.

Полученные в настоящей работе результаты могут быть использованы для проведения методом Монте—Карло соответствующих расчетов с использованием различных модельных представлений процесса фрагментащии кварков и глюонов в адроны.

Автор выражает благодарность С. Г. Матиняну за обсуждение результатов работы.

ЛИТЕРАТУРА

- 1. Farhi E. Phys. Rev. Lett., 39,1587 (1977).
- 2. De Rujula A. et al. Nucl. Phys., B138, 387 (1978).
- 3. Hoyer P. et al. Nucl. Phys, B161, 349 (1979).
- 4. Шахназарян Ю. Г. Изв. АН АрмССР, Физика, 20, 183 (1985).
- 5. Ioffe B. L. Phys. Lett., 78 B, 277 (1978).
- 6. Granberg G., Ng Y J.; Tye S.-H. H. Phys. Rev., D21, 62 (1980).
- 7. Kramer G., Schierholz G., Willrodt J. DESY Preprint 79/69, 1979.
- 8. Шахназарян Ю. Г. ЯФ, 35, 438 (1982).

$e^+e^- \rightarrow q \bar{q} g$ arasoup usruure fuctor fuctors (usuur) buantur outor fuctors (usuur)

30h. 9. TULLUQUPSUL

Рվшимшіри реплапришірішір срушицирепсі հимицаміше է дийр рішецирірір цийрվшер հырадішаліши шальдагіріали е÷е—→qqg кашфалиу щрадьир імпрішер' рим Т (шашциер հырадішаліши шальдагіріали е÷е—→qqg кашфалиу щрадьир імпрішер' рим Т (шашцігі іго багадішаліши шальдагі цирмали ві стір с марали по шашдар бішталир ішіршір рішций рифающий бар риздийши ірші валід с марішев, ар имшдіра шалалія ішіршір ішщий іші фафающий бар дшарія Яшірі стіріали с по шашдіра шалалія ішіршір ішщий ви рішерір санці ритішівише и ша траліцір мали с рерали с аг зарація х₁-рі фара шарововова маралірі санці ритішівить и стіріцірі мали с циртарали с царьної х₁-рі фара шарововова, ші и d²σ/dTdx и царидивер х₁-ішішішевалів інширидаля царьної царьної і шалідішерівної шашуше.

TRANSVERSE MOMENTUM DISTRIBUTION OF $e^+e^- \rightarrow qqg$ PROCESS CROSS SECTION FOR HEAVY QUARKS

YU. G. SHAKHNAZARYAN

It was shown that the allowance for heavy quarks mass strongly affected the theory predictions for the distribution of $e^+e^- \rightarrow q\bar{q}g$ process cross section in the value of thrust, T, and in the momentum x_{\perp} of every other of two partons transverse to the T axis in this process. The consideration of the quark mass results in notable widening of variation range of x_{\perp} as compared with the massless case and in the shift of this range to smaller values of x_{\perp} , and also leads to a rise of structures in curves describing the x_{\perp} -dependence of $d^{2\sigma}/dTdx_{\perp}$.

Изв. АН Армянской ССР, Физика, т. 22, вып. 4, 191-197 (1987)

УДК 523.64

1

ВЫСОКОТОЧНЫЕ АНАЛИТИЧЕСКИЕ РЕШЕНИЯ ЗАДАЧИ ПЕРЕНОСА ИЗЛУЧЕНИЯ В ПЛОСКОМ СЛОЕ ДЛЯ МОДЕЛИ ПОЛНОГО ПЕРЕРАСПРЕДЕЛЕНИЯ ПО ЧАСТОТАМ

Р. Г. ГАБРИЕЛЯН, А. Р. МКРТЧЯН, Х. В. КОТАНДЖЯН

Институт прикладных проблем физики АН АрмССР

М. А. МНАЦАКАНЯН

Бюраканская астрофизическая обсерватория АН АрмССР

(Поступила в редакцию 5 мая 1986 г.)

Найдены приближенные высокоточные аналитические решения наиболее общей по постановке задачи о переносе некогерентного излучения в трехмерной среде конечной оптической толщины для модели полного перераспределения по частотам.