ЛИТЕРАТУРА

1. Шахназарян Ю. Г. ЯФ, 36, 1523 (1982).

2. Ioffe B. L. Phys. Lett., 78 B, 277 (1978).

3. Granberg G., Ng Y. J., Tye S.-H. H. Phys. Rev., 21, 62 (1980).

4. Kramer G., Schierholz G., Willrodt J. DESY Preprint 79/69, 1979.

5. Шахназарян Ю. Г. ЯФ, 35, 438 (1982).

6. Шахназарян Ю. Г. Изв. АН АрмССР, Физика, 17, 308 (1982).

$e^+e^- ightarrow q q g$ ዕዙԱቀበኦኒ ግባበሪዕሀኮ ԱՆԿሪበኦՆԱሪኮՆ ԲԱՇԽՈՒՄՆԵՐԸ ԾԱՆՐ ՔՎԱՐԿՆԵՐԻ ԴԵՊՔՈՒՄ

ՅՈՒ. Գ. ՇԱՀՆԱԶԱՐՅԱՆ

 U_{hqp} նական մասնիկների բևեռացման և քվարկի ղանգվածի հաշվառմամբ, քվանտային քրոմոդինամիկայի առաջին մատավորուfյամբ հաշկկած $e^+e^-
ightarrow qqg$ պրոցեսի կտրվածքի

ամենաընդշանուր արտաշայտունյան շիման վրա գտնված է d 35/ d T d T կտրվածքի կախվածությունը առավելագույն T իմպուլս ունեցող պարտոնի (քվարկի, շակաքվարկի կամ գլյուռնի) բևեռային և ազիմուտային անկյուններից։ T - ի մի քանի արժեքների շամար կատարված նվային շաշվարկը ցույց է տալիս, որ կտրվածքի անկյունային կախվածունյունը բնորոշող գործակիցները էապես կախված են քվարկի զանգվածը բնունագրող պարամետրից։

ANGULAR DISTRIBUTIONS FOR THREE—JET PROCESS $e^+e^- \rightarrow q \overline{q} g$ IN CASE OF HEAVY QUARKS

YU. G. SHAKHNAZARYAN

Based on the most general expression for the cross section of $e^+e^- \rightarrow q\bar{q}g$ process calculated to the first order in a_s with due regard for the polarization of

primary particles and the quark mass, a dependence of cross section $d^3z/dTdT$ on the polar and azimuthal angles of the spatial orientation of the thrust T is obtained The calculations for some values of T show that the factors determining the angular dependence of the cross section are strongly related to the mass parameter η . The dependences of angular distributions on the values of T and η parameters were analyzed.

Изв. АН Армянской ССР, Физика, т. 22, вып. 3, 133-139 (1987)

УДК 535.24;535.6

КВАНТОВАЯ ТЕОРИЯ ЧЕРЕНКОВСКОГО ЛАЗЕРА

С. Г. ОГАНЕСЯН, С. В. АБАДЖЯН

НИИ физики конденсированных сред ЕГУ (Поступила в редакцию 15 июня 1986 г.)

Вычислен вклад магнитного момента электрона в коэффициент усиления черенковского лазера. Рассмотрены поляризационные оптические эффекты, связанные с гиротропией пучка частиц. 1. Классическая теория черенковского лазера была развита в работе [1] на основе замкнутой самосогласованной системы уравнений Власова и Максвелла. В настоящей работе изучено влияние магнитного момента влектрона на коэффициент усиления и поляризацию усиливаемой волны. Взаимодействие магнитного момента электрона с электромагнитной волной приводит к дополнительным слагаемым порядка отдачи в коэффициенте усиления [1]. Из-за этого чисто квантового эффекта коэффициент усиления не обращается в нуль даже в случае коллинеарного распространения пучка частиц и усиливаемой волны. Отметим, что классическая и квантовая теории спонтанного излучения магнитного момента были рассмотрены: в работах [2—4].

Так как поляризованный пучок электронов представляет собой анизотропную среду, обладающую гиротропией [5], то это приводит также к повороту и деформации эллипса усиливаемой волны. Этот эффект можно использовать для анализа структуры и поляризации пучка электронов.

2. Вычислим коэффициент усиления черенковского лазера в линейном по полю приближении [6, 7] из самосогласованной системы уравнений Дирака и Максвелла:

$$i\hbar \frac{\partial \psi}{\partial t} = \left[c \alpha \left(\hat{\mathbf{p}} - \frac{e}{c} \mathbf{A} \right) + m \beta c^2 \right] \psi, \qquad (1)$$

$$\Delta \mathbf{A} - \frac{n^2}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\frac{4\pi}{c} \mathbf{j}, \qquad (2)$$

$$\mathbf{j} = ec \sum_{\mu} \bar{n}_{\mu} \psi^{+}_{\mu} \alpha \psi_{\mu}, \qquad (3)$$

где n_{μ} — среднее число электронов в μ -состоянии [8]. В определении тока (3) учтено, что в линейном приближении вклад обменных эффектов равен нулю.

Полагая, что амплитуды векторного потенциала усиливаемой волны

$$A_x = A_2 \cos(kz - \omega t), \ A_y = A_2 \sin(kz - \omega t)$$
(4)

слабо зависят от координаты 2, из уравнения (1) находим волновую функцию частицы

$$\psi = \{1 + a_{+} \exp \left[i(kz - \omega t)\right] + a_{-} \exp\left[-i(kz - \omega t)\right]\} \psi_{0}.$$
 (5)

Здесь

$$a_{+} = -\frac{ec\left(\hat{p}_{+} + imc\right)\gamma A_{+}}{4\hbar\omega E\left[1 - n\beta_{z} - \frac{\hbar\omega}{2E}\left(n^{2} - 1\right)\right]}$$

(6)

$$a_{-} = \frac{ec \left(p_{-} + imc\right) \gamma A_{-}}{4\hbar\omega E \left[1 - n\beta_{z} + \frac{\hbar\omega}{2E} \left(n^{2} - 1\right)\right]}$$

— амплитуды процессов поглощения и излучения фотона, $(p_{\pm})_{*} = (\mathbf{p} \pm \pm \hbar \mathbf{k}, i(E \pm \hbar \omega)/c)$ — компоненты 4-вектора импульса, $\mathbf{A}_{\pm} = \hat{i} A_{\pm} \pm \hat{j} i A_{\pm}$.

Iде i, j — единичные векторы вдоль осей $ox, oy, \beta = v/c$,

$$\psi_0 = \frac{1}{\sqrt{2EV}} u(p) \exp\left[\frac{i}{\hbar} \left(\mathbf{pr} - Et\right)\right]$$
(7)

— волновая функция, описывающая начальное состояние частицы, V нормировочный объем [9]. Выражения (6) справедливы при условии

$$\frac{|e|\sqrt{(\mathbf{A}_{+}\beta)(\mathbf{A}_{-}\beta)}}{\hbar\omega|1-n\beta_{z}|} \ll 1.$$
(8)

Полагая, что до взаимодействия поляризационная матрица плотности и-состояния электрона имеет вид [9]

$$\widehat{\rho}_{\mu} = \frac{c}{2} (mc - i \widehat{p}_{\mu}) (I + i \gamma_5 \, \widehat{s}_{\mu}), \qquad (9)$$

и переходя в правой части (3) от суммирования к интегрированию $(\sum_{\mu} \rightarrow N]f(\mathbf{p}) d\mathbf{p}$, где N -число частиц в объеме V, а $f(\mathbf{p}) -$ функция распределения частиц в импульсном пространстве), вычислим ток (3). Так как амплитуды $A_{1,2}$ слабо зависят от координаты z, для их определения получаем систему дифференциальных уравнений первого порядка:

$$\frac{\partial A_{1}}{\partial z} = \frac{i\omega_{p}^{2}}{2n\omega} \int \frac{mc}{E} \left[\frac{(1-n^{2})\beta_{x}^{2} - (1-n\beta_{z})^{2}}{(1-n\beta_{z})^{2} - \left(\frac{\hbar\omega}{2E}\right)^{2}(1-n^{2})^{2}} A_{1} + \frac{(1-n^{2})\left[\beta_{x}\beta_{y} + \frac{i\hbar\omega mc^{2}}{2E^{2}}\left(s_{z} - ns_{0}\right)\right]}{(1-n\beta_{z})^{2} - \left(\frac{\hbar\omega}{2E}\right)^{2}(1-n^{2})^{2}} A_{2} \right] f(\mathbf{p}) d\mathbf{p}, \quad (10a)$$

$$\frac{\partial A_2}{\partial z} = \frac{i\omega_p^2}{2n\omega} \int \frac{mc}{E} \left[\frac{(1-n^2) \left[\beta_x \beta_y - \frac{i\hbar\omega mc^2}{2E^2} \left(s_x - ns_0\right)\right]}{(1-n\beta_x)^2 - \left(\frac{\hbar\omega}{2E}\right)^2 (n^2-1)^2} A_1 + \right]$$

$$+\frac{(1-n^2)\beta_g^2-(1-n\beta_z)^2}{(1-n\beta_z)^2-\left(\frac{\hbar\omega}{2E}\right)^2(n^2-1)^2}A_2\left[f(\mathbf{p})\,d\mathbf{p},\tag{106}\right]$$

где (s, is_0) — компоненты 4-вектора поляризации электрона $s_v, \omega_p^2 = = 4\pi e^3 \rho/m, \rho$ — плотность электронов. По определению [5] коэффициент гиротропии

$$g_{3} = \frac{1}{2} \left(\frac{\omega_{p}}{\omega}\right)^{2} \int \frac{\hbar \omega (mc^{2})^{2} (n^{2} - 1) (s_{z} - ns_{0})}{E^{3} \left[(1 - n\beta_{x})^{2} - \left(\frac{\hbar \omega}{2E}\right)^{2} (n^{2} - 1)^{2} \right]} f(\mathbf{p}) d\mathbf{p}$$
(11)

определяется поляризацией лучка электронов.

Если пучок частиц имеет только энергетический разброс гауссовского вида и движется в плоскости yz под углом θ к оси oz, то в классическом пределе ($\hbar \rightarrow 0$) из уравнения (106) получаем результат работы [1]

$$\Gamma_y = 2, 1 \cdot \frac{\omega_p^2}{\omega_c} \frac{n^2 - 1}{n} \left(\frac{p}{mc}\right)^4 \mathcal{E} \frac{(mv^2)}{\Delta^2} \sin^2\theta, \qquad (12)$$

причем усиление отлично от нуля лишь для у-составляющей волны, в точном соответствии с классической теорией спонтанного черенковского эффекта. Здесь Δ — ширина энергетического разброса, E — средняя энергия пучка частиц. В расчетах причималось, что разность между энергией электронов, участвующих в излучении фотона (определяется полюсом a_{-}), ж энергией электронов, участвующих в поглощении фотона (определяется полюсом a_{+}), удовлетворяет неравенству

$$E_{-}-E_{+}=\hbar \omega\beta^{2}\left(\frac{E}{mc^{2}}\right)^{2}(n^{2}-1)\ll\Delta.$$
(13)

Если пучок ультрарелятивистский $(E/mc^2 \gg 1)$, то $E_- - E_+$ может стать больше ширины Δ . В этом случае можно пренебречь поглощением электромагнитной волны и коэффициент усиления будет иметь чисто квантовый характер:

$$\Gamma_{g} = 1.5 \cdot \beta^{3} \left(\frac{E}{mc^{2}}\right)^{2} \frac{mv}{n\hbar} \frac{E}{\Delta} \left(\frac{w_{p}}{\omega}\right)^{2} \sin^{2}\theta.$$
(14)

Оценки показывают, что он велик. Однако практическая реализация этого предельного случая связана со сложной проблемой создания пучковчастиц с ничтожно малым угловым разбросом [1]

$$\delta \ll \frac{\Delta (mc^2)^2}{\beta^2 E^3 \operatorname{tg} \theta} \,. \tag{15}$$

3. Проанализируем теперь систему (10) в случае, когда начальный пучок частиц не поляризован: $s_y = 0$ и $\beta_x = 0$. Учет магнитного момента электрона приводит к дополнительному чисто квантовому эффекту — усилению волны, поляризованной вдоль оси ох:

$$\Gamma_x = \left(\frac{\hbar\omega}{2E}\right)^2 \frac{n^2 - 1}{\sin^2\theta} \Gamma_y, \qquad (16)$$

гле Γ_v определяется выражением (12) (для спонтанного черенковского кэлучения аналогичный поляризационный эффект рассматривался в работе [10]).

Для волны, поляризованной вдоль оси оу, получаем квантовую поправку к коэффициенту усиления (12):

$$\Delta \Gamma_{g} = \frac{\beta^{2}}{2} \left(\frac{\hbar\omega}{2E}\right)^{2} (n^{2} - 1) \left[(n^{2} - 1) \left(-\frac{E}{mc^{2}}\right)^{4} + \frac{2}{\beta^{2} \sin^{2} \theta} \right] \Gamma_{g}.$$
(17)

Contract Dates

Отметим также, что при учете спина коэффициент усиления отличен от нуля при коллинеарном распространении волны и пучка частиц ($\theta = 0$).. Учет углового разброса пучка частиц δ осуществляется заменой ширины. Δ на эффективную ширину [1]

.....

$$D = \left[\Delta^2 + \frac{1}{2} \partial^2 \operatorname{tg}^2 \theta \left(\frac{p}{mc}\right)^4 E^2\right]^{1/2}.$$
 (18)

4. Теория возмущений, развитая в предыдущих пунктах для вычисления коэффициента усиления черенковского лазера, справедлива при условии [1] $\Gamma_y \ll 2k_s$ которое всегда выполняется для пучков частиц с плотностями $\rho < 10^{12}$ см⁻³, $E \leq 10$ мэВ и $\lambda \leq 10$ мкм. При этом условиеукорочения волнового уравнения (2)

$$\left|\frac{\partial^2 \mathbf{A}}{\partial z^2}\right| \ll 2k \left|\frac{\partial \mathbf{A}}{\partial z}\right|$$

выполняется автоматически.

Таж как числа заполнений для ферми-частиц не превышают единицы. $(n_u \leq 1)$, то это приводит к ограничению на плотность пучка

$$\rho_{2} \leq \left[\frac{\beta\delta^{2}}{4\pi^{2}\lambda_{k}^{3}} \left(\frac{E}{mc^{2}}\right)^{2} + \frac{(L_{x} + L_{y})\delta E}{\pi\lambda_{k}^{2}Smc^{2}} + \frac{1}{\pi\beta\lambda_{k}S}\right]\frac{\Delta}{mc^{2}} + \frac{2\beta^{2}\delta^{2}}{\pi^{2}\lambda_{k}^{2}L_{z}} \left(\frac{E}{mc^{2}}\right)^{2} + \frac{2(L_{x} + L_{y})\beta\delta E}{\pi V\lambda_{k}mc^{2}} + \frac{2}{V}.$$
(19)

Здесь λ_k — комптоновская длина волны, L_x , L_y , L_z — размеры пучка. частиц, $S = L_x L_y$ — его поперечное сечение. Следовательно, формулы (12), (14), (16) и (17) справедливы при плотностях

$$p_1 \lesssim \frac{1}{\pi \beta \lambda_k S} \frac{\Delta}{inc^2}$$
 (20)

Для пучков с большими плотностями $\rho_1 < \rho \lesssim \rho_2$ в этих формулах следует произвести замену $\Delta \rightarrow D$. Отметим, что для обычных пучков ($\rho < 10^{12}$ см⁻³, $\Delta/E \lesssim 10^{-3}$, $\delta \lesssim 10^{-3}$) неравенство (19) выполняется всегда.

5. Рассмотрим теперь полярнзационные оптические эффекты для пучков электронов с $s_{,} = 0$ и $\beta_{x} = 0$. Решая систему уравнений (10) вдали от областей усиления или поглощения сигнальной волны ($|E-E_{\pm}| \gg \Delta$, где E_{\pm} — энергии, при которых знаменатели в (10) обращаются в нуль, E — средняя энергия пучка частиц), для проекций векторного потенциала (4) находим

$$A_x = a_1 \cos(k_1 z - \omega t) + a_2 \cos(k_2 z - \omega t),$$

$$A_y = a_3 \sin(k_1 z - \omega t) + a_4 \sin(k_2 z - \omega t),$$
(21),

где амплитуды а; определяются выражениями

$$a_{1} = [bA_{20} - (n_{2} - a)A_{10}]/(\Delta n), \ a_{2} = [(n_{1} - a)A_{10} - bA_{20}]/(\Delta n),$$

$$a_{3} = -[bA_{10} + (n_{1} - a)A_{20}]/(\Delta n), \ a_{4} = [(n_{2} - a)A_{20} + bA_{10}]/(\Delta n),$$
(22)

BARENIN HAJE APRIPH

а волновые векторы -

$$k_{1,2} = k + \frac{n_{1,2} \omega_{\mu}^{2} mc}{2n \omega E \left[(1 - n\beta_{s})^{2} - \left(\frac{\hbar \omega}{2E}\right)^{2} (n^{2} - 1)^{2} \right]}$$
(23)

. . 1

137.

2-229

В выражениях (22) и (23) использованы обозначения:

$$a = -(1 - n\beta_z)^2, \ b = \frac{\hbar\omega}{2E^2} (n^2 - 1) (s_z - ns_0) mc^2, \ \Delta n = n_1 - n_2,$$
(24)

$$n_{1,2} = \frac{1}{2} (1-n^2) \beta_y^2 \left(1 \pm \sqrt{1 + \left[\frac{\hbar \omega m c^2}{E^2 \beta_y^2} (s_z - n s_0)\right]^2}\right) - (1-n\beta_z)^2.$$

В системе координат (x', y', z), повернутой на угол

$$\varphi = \frac{1}{2} \operatorname{arc} \operatorname{tg} \left\{ \frac{2\sqrt{1+4x^2} \left(x\frac{r^2-1}{r}-1\right) \sin\left(\Delta kz\right)}{\left(1+4x^2\right) \frac{r^2-1}{r}-8x\left(x\frac{r^2-1}{r}-1\right) \sin^2\left(\frac{\Delta kz}{2}\right)} \right\},$$
(25)

векторный потенциал (21) описывает эллипс с главными осями вдоль ох' и оу'. Параметр

$$x = \frac{\hbar\omega mc^2 (s_z - ns_0)}{2E^2 \beta_y^2},$$

 $\Delta k = k_1 - k_2$, а $r = A_{10}/A_{20}$ — отношение осей эллипса усиливаемой волны в точке z = 0. Очевидно, что поворот эллипса определяется как анизотропией пучка частиц, так и его поляризацией. Для больших углов, когда

$$\theta \gg \sqrt{\frac{\hbar\omega mc^2 |s_x - ns_0|}{2E^2}} \frac{c}{v}$$
 (или $|x| \ll 1$),

имеем

$$\varphi = \frac{1}{2} \operatorname{arc} \operatorname{tg} \left\{ \frac{2r}{1-r^2} \sin \left[\pi \left(\frac{\upsilon}{c} \right)^2 \frac{1-n^2}{n} \frac{mc^2}{E} \left(\frac{\omega_p}{\omega} \right)^2 \frac{\sin^2 \theta}{(1-n\beta_z)^2} \frac{z}{\lambda} \right] \right\}.$$
(26)

Если угол в мал,

$$\theta \ll \sqrt{\frac{\hbar\omega mc^2 |s_z - ns_0|}{2E^2}} \frac{c}{v}$$
 (или $|z| \gg 1$),

поворот обусловлен поляризацией пучка:

$$|\varphi| = \frac{\pi}{2} \left(\frac{\omega_{\rho}}{\omega}\right)^{2} \frac{\hbar \omega}{E^{3}} \frac{n^{2} - 1}{n} \frac{(mc^{2})^{2} |s_{z} - ns_{0}|}{(1 - n\beta_{z})^{2} - \left(\frac{\hbar \omega}{2E}\right)^{2} (n^{2} - 1)^{2}} \frac{z}{\lambda} \cdot$$
(27)

6. Проиллюстрируем полученные результаты численными оценками. Пусть пучок электронов с плотностью $\rho = 10^{10}$ см⁻³ распространяется в резонансной газовой среде с показателем преломления n = 1,005 и взаимодействует с лазерным излучением на длине волны $\lambda = 0,67$ мкм. Для E = 7МэВ, $\theta = 6,9 \cdot 10^{-2}$, r = 1,6 угол поворота эллипса $\varphi = 1,4 \cdot 10^{-5}$ рад, если область взаимодействия z = 1см. При $\theta = 0$ и полной поляризации пучка электронов вдоль оси ог угол поворота -10^{-7} рад, если плотность пучка электронов $\rho = 10^{12}$ см⁻³, E = 5,1 МэВ, его угловой и энергетический разбросы — соответственно $\delta < 10^{-3}$ и $\Delta/E < 10^{-3}$, а область взаимодействия z = 1м. Легко проверить, что при таких значениях параметров также справедливо условие укорочения волновогоуравнения (2). При характерной плотности резонансного газа 5,4 × × 10¹¹см⁻³ и относительном разбросе частот лазерного излучения. $\Delta \omega / \omega \lesssim 10^{-8}$ можно пренебречь дисперсией среды и эффектом кулоновского рассеяния электронов.

Авторы приносят глубокую благодарность В. М. Арутюняну, предложившему тему настоящей работы, за обсуждение результатов.

ЛИТЕРАТУРА

- 1. Арутюнян В. М., Оганесян С. Г. Письма в ЖТФ, 7, 539 (1981).
- 2. Гинабург В. Л. ЖЭТФ, 10, 589 (1940).
- 3. Франк И. М. Сборник памяти С. И. Вавилова. Изд. АН СССР, 1952, с. 172.
- 4. Гинзбург В. Л., Эйдман В. Я. ЖЭТФ, 35, 1508 (1958).
- 5. Ландау Л. Д., Лифшиц Е. М. Электродинамика сплошных сред, Изд. Наука, М.,. 1982.
- Силин В. П., Рухадзе А. А. Электромагнитные свойства плазмы и плазмоподобных сред. Госатомиздат, М., 1961.
- 7. Фелоров М. В. УФН, 135, 213 (1981).
- 8. Ландау Л. Д., Лифшиц Е. М. Статистическая физика, Изд. Наука, М., 1976.
- 9. Ахиезер А. И., Берестецкий В. Б. Квантовая электродинамика, Изд. Наука, М., 1969.
- 10. Соколов А. А., Лоскутов Ю. М. ЖЭТФ, 32, 630 (1957).

ՉԵՐԵՆԿՈՎՅԱՆ ԼԱԶԵՐԻ ՔՎԱՆՏԱՅԻՆ ՏԵՍՈՒԹՅՈՒՆԸ

Ս. Գ. ՀՈՎՀԱՆՆԻՍՅԱՆ, Ս. Վ. ԱԲԱԶՅԱՆ

Հաշվված է էլեկտրոնների մագեիսական մոմենտի ներդրումը չերենկովյան լադերի ուժեղացման դործակցում։ Քննարկված են օպտիկական բևեռացման էֆեկտները, որոնք կապված են մասնիկների փնջի հիրոտրոպիայի հետ։

QUANTUM THEORY OF THE CHERENKOV LASER

S. G. OGANESYAN, S. V. ABADZHYAN

The influence of magnetic moment of electrons on the gain and polarization of an electromagnetic wave in the Cherenkov laser was studied.