УДК 548.732

ФОКУСИРОВКА И ДЕФОКУСИРОВКА РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ПОД ДЕЙСТВИЕМ ТЕМПЕРАТУРНОГО ГРАДИЕНТА И УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ

А. Р. МКРТЧЯН, Р. Г. ГАБРИЕЛЯН, А. А. АСЛАНЯН, А. Г. МКРТЧЯН, Х. В. КОТАНДЖЯН

Институт прикладных проблем физики АН АрмССР

Проведено детальное исследование явления фокусировки и дефокусировки дифрагированного рентгеновского излучения с разными волновыми фронтами в кристаллах под действием температурного градиента и ультразвуковых колебаний.

Одной из важных проблем в процессе управления рентгеновским дифрагированным излучением является его фокусировка. Этот вопрос впервые в идеальных кристаллах теоретически был рассмотрен авторами работы [1]. Ими было показано, что если падающая волна сферическая, то дифрагированное излучение может фокусироваться за кристаллом. Результаты этой работы экспериментально были подтверждены в работах [2, 3]. Отметим также работы [4, 5], где авторы построили теорию дифракционной фокусировки рентгеновских лучей однородно изогнутым кристаллом и кристаллом, содержащим дефект упаковки, параллельный поверхности.

Однако в этих работах не рассматривался вопрос дефокусировки и управления фокусировкой дифрагированного излучения. В дальнейшем авторы [6, 7] показали, что с помощью акустических полей и температурного градиента можно управлять местоположением фокуса в пространстве, а также преобразовывать сферическую волну в плоскую.

В настоящей работе приведены результаты детального экспериментального и теоретического анализа этого явления, вопросы дефокусировки, а также вопросы геометрической фокусировки полихроматического излучения с разными волновыми фронтами.

Сначала изложим результаты экспериментальных исследований в случае, когда внешним воздействием является температурный градиент. Схема такого эксперимента описана в работе [6]. В качестве рассеивателя был использован монокристалл кварца х-среза с толщиной $t \sim 1/\mu$, где μ — линейный коэффициент поглощения. Сферическая рентгеновская волна от источника с молибденовым анодом, находящегося на расстоянии 70 см от рабочего кристалла, коллимированная щелями 20 мкм на расстоянии 5 см от источника и 0,1 мм непосредственно у рассеивателя, падала на кристалл. Такая геометрия была выбрана с целью выделения с хорошим разрешением дифрагированной линии K_{a_1} из белого пучка. Результаты экспериментальных исследований положения фокусного расстояния от рассеивателя в зависимости от величины и направления температурного градиента приведены на рис. 1.

297

Из рис. 1 (левая сторона) следует, что по сравнению с фокусным расстоянием для идеального кристалла $L_2 = \Gamma t = 18,6$ м положение фокуса дифрагированного излучения с увеличением температурного градиента с

Рис. 1. Распределение волнового фронта и ширины дифрагированного рентгеновского пучка для трех значений температурного градиента: левая сторона — температурный градиент антипараллелен вектору дифракции (случай фокусировки); правая сторона — градиент параллелен h (случай дефокусировки). Эксперимент.

вектором, антипараллельным вектору дифракции, приближается к кристаллу до расстояний $L_2\sim 35$ см, $L_2\sim 15$ см и $L_2\sim 0$, а поперечные сечения этих фокусных пятен сужаются в 6, 4 и 3 раза по сравнению с размерами бормановской палатки.

На рис. 1 (правая сторона) приведены результаты экспериментальных исследований в случае, когда вектор градиента параллелен вектору дифракции, при тех же значениях $\partial T/\partial x$ и L_z . Размеры фокусных пятен в этом случае больше, причем они растут по мере удаления от рассеивателя. Фактически мы имеем дело с дефокусировкой.

Таким образом, воздействием градиента температуры можно управлять местоположением фокуса и, что особенно нужно отметить, сферическую волну можно преобразовать в плоскую.

Был проведен также эксперимент со щелью коллимации 1 мм, которая обеспечивала одновременную дифракцию K_{α_1} и K_{α_2} -линий, так как при этом угловая расходимость дифрагированного пучка больше, чем угловые расстояния между линиями K_{α_1} и K_{α_2} . Экспериментальные результаты поведения сечения пучков в зависимости от температурного градиента на разных расстояниях от рассеивателя приведены на рис. 2а, б. Как следует

из этого рисунка, по мере увеличения градиента наблюдается сужение характеристических линий K_{z_1} и K_{z_2} т. е. имеет место явление фокусировки. Одновременно поведение характеристических линий в зависимости от расстояния до рассеивателя показывает, что они сближаются друг с другом

Рис. 2. Распределение волнового фронта дифрагированного рентгеновского пучка K_{σ_1} и K_{σ_2} пои наличии темперагурного градиента: а) градиент антипараллелен h (случай фокусировки); б) градиент параллелен h (случай дефокусировки); в) при наличии в кристалле УЗ волны (излучение K_{σ_1}). Эксперимент.

по мере удаления от рассеивателя, пересекаются и в дальнейшем расходятся, т. е. происходит геометрическая фокусировка полихроматического излучения на расстоянии 70 см.

Аналогичные результаты получаются для линии K_{α_1} в случае, когда в качестве внешнего воздействия используются акустические колебания (см. рис. 2 θ).

Для объяснения поведения дифрагированного излучения при наличии внешних воздействий решим уравнения Такаги [8], описывающие дифракцию рентгеновского излучения, для следующего класса деформаций

$$\alpha(s_0, s_h) = \alpha_0(s_0) + \alpha_h(s_h), \qquad (1)$$

который, на наш взгляд, представляется интересным, так как он описывает реальную экспериментальную ситуацию. Рассмотрение такого поля искажений с эквивалентно изменению граничных условий при решении уравнений Такаги. При этом решение принимает вид

$$D_h(x, z) = \frac{1}{2\pi} e^{-lu_h(x,z)} \int_{-\infty}^{\infty} F(p) V_h(p, z) e^{lpx} dp, \qquad (2)$$

где

$$F(p) = \int_{-\infty}^{\infty} f(x) e^{i\alpha_h(x,0)} e^{-ipx} dx,$$

$$V_h(p,z) = \frac{i\sigma_0}{\sqrt{p^2 + \sigma_0^2}} \sin(z \operatorname{tg} \theta) \sqrt{p^2 + \sigma_0^2}, \, \sigma_0 = \frac{\pi}{\Lambda \operatorname{tg} \theta},$$

 Λ — длина экстинкции.

Подставляя F(p) в выражение (2) и интегрируя по p, для поля (2) получим

$$D_h(x, z) = e^{-i\alpha_h(x, z)} \int_{x+z \log \theta}^{x-z \log \theta} f(x') e^{i\alpha_h(x', 0)} \int_{\theta} \left(\frac{\pi}{\Lambda}\right) \sqrt{z^2 - \left(\frac{x-x'}{\log \theta}\right)^2} dx',$$
(3)

где J_0 — функция Бесселя.

Рассмотрим разные случаи внешних воздействий.

1. Случай акустических колебаний

Мера воздействия акустических колебаний на кристалл в этом случае имеет вид

$$a(x, z) = a \cos q s_0 + a \cos q s_h = 2a \cos q z \cos q \frac{x}{tg \theta}, \qquad (4)$$

где a — параметр, прямо пропорциональный амплитуде акустических колебаний, q — волновое число акустической волны, $q=2q\cos\vartheta$.

Рассмотрим два случая фокусировки в зависимости от местоположения фокуса.

а) Фокусировка внутри кристалла.

Так как случай плоской волны является частным случаем сферической волны, то сначала рассмотрим фокусировку слабо поглощающейся внутри кристалла сферической волны.

В случае сферической волны с фронтом

$$f(x) = \frac{e^{iKL_1}}{L_1} e^{i\frac{K}{2L_1} x^2 \cos^2 \theta}$$
 (5)

дифрагированное поле в кристалле, согласно (3), имеет вид

$$D_h(x,z) = i \frac{\sigma_z}{2L_1\gamma} \exp\left[i\left(KL_1 - a\cos B\left(z \operatorname{tg}\theta - x\right)\right)\right] \int_{-1}^{1} \exp\left[i\frac{K}{2L_1}\right]$$

$$\times \gamma^{2} (z \operatorname{tg} \theta \cdot \tau - x)^{2} + ia \cos B (z \operatorname{tg} \theta \cdot \tau - x) \left| \int_{0}^{\infty} \left(\frac{\pi z}{\Lambda} \right) \left(\overline{1 - \tau^{2}} \right) d\tau, \right|$$
 (6)

где L_1 — расстояние от источника до образца, $\gamma = \cos \vartheta$, $B = q/{\rm tg}\,\vartheta$, $\tau = (x-x')/(z\,{\rm tg}\,\vartheta)$.

Для нахождения местоположения фокуса внутри кристалла воспользуемся методом стационарной фазы. В результате получим

$$x_{\Phi} = 0, z_{\Phi} = \frac{z_0}{1 - \beta L_1},$$
 (7)

где z_{Φ} и x_{Φ} — координаты фокуса вдоль и поперек толщины,

$$z_0 = \frac{\pi L_1}{K\Lambda \sin^2 \theta} = \frac{L_1}{\Gamma}, \ \beta = \frac{aq^2}{K \sin^2 \theta}, \ \Gamma = \frac{K \sin^2 \theta}{\pi} \Lambda.$$
 (8)

В частном случае $\beta=0$ получается известный результат для идеального кристалла.

Из выражения (7) следует, что по мере увеличения амплитуды акустической волны фокус удаляется от входной поверхности кристалла при $\beta > 0$ ($h \uparrow \uparrow A$) и приближается к ней при $\beta < 0$ ($h \uparrow \downarrow A$).

В случае, когда на кристалл падает не сферическая, а плоская волна $(L_1 \to \infty)$, при $\beta < 0$ она фокусируется в кристалле, т. е. волна в кристалле становится сферической. Местоположение фокуса в кристалле в этом случае определяется выражением

$$z_{\Phi} = \frac{\pi}{\Lambda a q^2} \cdot \tag{9}$$

Отсюда следует, что при $a\to\infty$ фокус приближается к плоскости z=0, а при $a=\pi/(\Lambda q^2\,t)$ фокус приближается к плоскости z=t.

Таким образом, из вышеизложенного следует, что, во-первых, фокусным расстоянием внутри кристалла можно управлять с помощью внешнего воздействия и, во-вторых, можно фокусировать плоскую волну, что принципиально невозможно осуществить с помощью идеальных кристаллов.

б) Фокусировка вне кристалла.

Согласно принципу Френеля поле вне кристалла с учетом дополнительной фазы, возникающей при распространении волны в вакууме, имеет вид (после интегрирования по y)

$$D_{h}(\xi, \eta, L_{2}) = \frac{K\sigma t}{8\pi L_{1}L_{2}\operatorname{tg}\vartheta} \sqrt{\frac{2\pi iL_{2}}{K}} \exp\left[iK(L_{1} + L_{2} + \operatorname{tg}\vartheta)\right] \int_{-\infty}^{\infty} dx \int_{-1}^{1} d\tau \times \\ \times J_{0}\left(\frac{\pi t}{\Lambda}\sqrt{1-\tau^{2}}\right) \exp\left\{i\frac{K}{2L_{1}}\gamma^{2}(x-t\operatorname{tg}\vartheta\tau)^{2} + i\frac{K}{2L_{2}}(x\cos\vartheta-\xi)^{2} + ia\cos\beta(x+t\operatorname{tg}\vartheta) + ia\cos\beta(x-t\operatorname{tg}\vartheta\tau)\right\}.$$
(10)

Используя разложение $\exp(ia\cos Bz)$ в ряд по функциям Бесселя и проведя интегрирование по x, с учетом условия $B^2 n^2 L_1 L_2/[2K\gamma^2(L_1+L_2)] \ll 1$ для величины D_h по лучим

$$D_{h}(\xi, \eta, L_{2}) \sim \int_{-1}^{1} d\tau J_{0}\left(\frac{\pi t}{\Lambda} \sqrt{1-\tau^{2}}\right) \exp\left\{i\frac{Kt^{2}\sin^{2}\theta}{L_{1}+L_{2}} \frac{\tau^{2}}{2} - i\frac{Kt\sin\theta}{L_{1}+L_{2}} \xi\tau + 2ia\cos\frac{Bt tg\theta}{2} (\tau+1)\cos B\left[\frac{1}{L_{1}+L_{2}} \left(L_{2}t tg\theta\tau + L_{1}\frac{\xi}{\gamma}\right) - \frac{t tg\theta}{2} (\tau-1)\right]\right\}. \tag{11}$$

 Λ егко видеть, что для достаточно больших значений $\pi t/\Lambda$ поле D можно представить следующим образом

$$D_h(\xi, \eta, L_2) \sim \int_{-1}^{1} \frac{e^{i\phi + (\tau)} + e^{i\phi - (\tau)}}{\sqrt[4]{1 - \tau^2}} d\tau, \qquad (12)$$

$$\begin{split} & \Phi_{\pm}\left(\tau\right) = \frac{K \, t^2 \sin^2 \vartheta}{L_1 + L_2} \, \frac{\tau^2}{2} - \frac{K t \sin \vartheta}{L_1 + L_2} \, \xi \tau \, \pm \, \frac{\pi}{\Lambda} \, t \, \sqrt{1 - \tau^2} \, \mp \, \frac{\pi}{4} \, + \\ & + \alpha \left\{ \cos B \left[\frac{L_2 \, t \, \mathrm{tg} \, \vartheta \tau + L_1 \xi / \gamma}{L_1 + L_2} + t \, \mathrm{tg} \, \vartheta \right] + \cos B \frac{(L_1 \, \xi / \gamma \, - L_1 \, t \, \mathrm{tg} \, \vartheta \tau)}{L_1 + L_2} \right\}. \end{split}$$

Знак минус в индексе ф относится к сильнопоглощающейся моде, знак плюс — к слабопоглощающейся моде.

Представляет интерес случай, когда в кристалле помещается полуцелое число длин волн: $B = \frac{2\pi}{t \, {\rm tg} \, \vartheta} \, (n+1/2)$ [9]. В этом случае из условий $\varphi_+^*(\tau) = \varphi_+^*(\tau) = 0$ находим каустическую поверхность, на которой собираются рентгеновские лучи и, следовательно, координаты фокуса, находящегося на острие этой поверхности:

$$\xi_{\phi} = 0, \ L_{2\phi} = \frac{\Gamma t (1 - \beta L_1) - L_1}{1 - \beta \Gamma t}$$
 (13)

Из выражения (13) следует, что при $\beta < 0$ ($h \uparrow \downarrow A$) с ростом β фокус приближается начиная с некоторого значения β , и L_2 падает по закону $1/\beta$. В обратном случае, когда $\beta > 0$ ($h \uparrow \uparrow A$), фокусное расстояние увеличивается по закону $\Gamma t/(1-\beta\Gamma t)$ и при $\beta \sim 1/\Gamma t$ $L_2 \rightarrow \infty$, т. е. сферическая волна преобразуется в плоскую. При дальнейшем увеличении $\beta (>1/\Gamma t)$ L_2 становится отрицательным, что эквивалентно появлению мнимого фокуса перед кристаллом, т. е. имеем явление дефокусировки (рис. 3). Из выражения (13) видно также, что фокусируется и дефокусируется и плоская волна в зависимости от знака и величины β .

Рис. 3. Распределение волнового фронта дифрагированного пучка перед кристаллом (мнимый фокус) и за кристаллом после 30-кратного увеличения масштаба при значении параметра β = 2,24 · 10 -2 см -1 Теория.

На рис. 4 приведены рельефы интенсивностей дифрагированного рентгеновского пучка для трех значений β на расстояниях $L_2=45$ —65 см, $L_2=35$ —55 см и $L_2=16$ —36 см от кристалла. Как видно из этого рисунка, с увеличением β фокусное расстояние L_2 уменьшается.

2. Случай температурного градиента

Мера воздействия температурного градиента на кристалл имеет следующий вид

$$\alpha(x, z) = a \operatorname{tg}^2 \vartheta z^2 + a x^2. \tag{14}$$

а) Фокусировка внутри кристалла.

Очевидно, что основные выводы, сделанные в предыдущем случае, справедливы и здесь

Рис. 4. Распределение волнового фронта дифрагированного пучка за кристаллом при трех значениях параметра β: a) — 1,79·10⁻² см⁻¹; 6) — 2,24·10⁻² см⁻¹; B) — 3,59·10⁻² см⁻¹. Теория.

Рис. 5. Распределение волнового френта и топограммы (справа) дифрагированного пучка внутри кристалла при трех значениях параметра β : a) = 0.015 см $^{-1}$; b) = 0.028 см $^{-1}$; b) = 0.032 см $^{-1}$. Теория.

Согласно выражению (2) дифрагированное поле внутри кристалла имеет вид

$$D_h(x,z) \sim e^{-la_h(x,z)} \int_{-\infty}^{\infty} \frac{\sin z \operatorname{tg} \vartheta \sqrt{p^2 + \sigma_0^2}}{\sqrt{p^2 + \sigma_0^2}} e^{-l\frac{p^2}{2k\gamma^2} \cdot \frac{L_1}{1+\beta L_1}} e^{lpx} dp \quad (15)$$

и фокусируется в точке с координатами

$$x_{\phi} = 0, \ z_{\phi} = \frac{z_0}{1 + \beta L_1},$$
 (16)

где $\beta = a/K v^2$.

. На рис. 5 приведены рельеф и топограмма дифрагированного поля внутри кристалла для разных значений a. Как видим, с увеличением a фокусное расстояние z ф приближается к плоскости z=0.

б) Фокусировка вне кристалла.

В этом случае дифрагированное поле вне кристалла есть

$$D_{h}(\xi, \eta, L_{2}) \sim \frac{1}{V(1 + \beta L_{1})(1 + \beta L_{2})} \int_{-\infty}^{\infty} V_{h}(p, t) \exp \left\{-i \frac{p^{2}}{2k\gamma^{2}} \times \left(\frac{L_{1}}{1 + \beta L_{1}} + \frac{L_{2}}{1 + \beta L_{2}}\right) + ip\left(\frac{\xi}{\gamma} - \beta t \operatorname{tg} \vartheta L_{2}\right)\right\} dp$$
(17)

и фокусируется в точке с координатами

$$\xi_{\phi} = \beta L^2 t \sin \vartheta, \ L_{2\phi} = \frac{\Gamma t - \frac{L_1}{1 + \beta L_1}}{1 - \beta \left(\Gamma t - \frac{L_1}{1 + \beta L_1}\right)}$$
(18)

Основные выводы, сделанные в случае акустических колебаний, справедливы и здесь.

Как следует из вышесказанного, теоретические выводы, объясняющие существование и основные закономерности фокусировки и дефокусировки, находятся в хорошем согласии с экспериментальными результатами.

Таким образом, с помощью внешних воздействий можно фокусировать или дефокусировать рентгеновское излучение, управлять фокусным расстоянием, преобразовывать плоскую волну в сферическую и наоборот, т. е. фактически создана «линза» для излучений рентгеновского диапазона длин волн.

ЛИТЕРАТУРА

- 1. Афанасьев А. М., Кон В. Г. ФТТ, 19, 1775 (1977).
- 2. Асистов В. В. и др. Письма в ЖЭТФ, 28, 6 (1978).
- 3. Козьмик В. Д., Михайлюк И. П. УФЖ, 23, 1570 (1978).
- 4. Чуховский Ф. Н., Петрашень П. В. ДАН СССР, 238, 1087 (1976).
- 5. Kato N., Usami K., Katagoma T. Adv. X-ray Anal., 10, 46 (1967).
- Mkrtchyan A. R., Navasardyan M. A., Gabrielyan R. G. Phys. Lett., A116, 444 (1986).

- 7. Mkrtchyan A. R. et al. Solid State Commun., 59, 147 (1986).
- 8. Takagi S. Acta Cryst., 15, 1211 (1962); J. Phys. Soc. Japan, 26, 1239 (1969).
- 9. Gabrielyan R. G. et al. Phys. Stat. Sel. (a), 92, 361 (1985).

ՌԵՆՏԳԵՆՅԱՆ ՃԱՌԱԳԱՅԹՆԵՐԻ ՖՈԿՈՒՍԱՑՈՒՄԸ ԵՎ ԴԵՖՈԿՈՒՍԱՑՈՒՄԸ ՋԵՐՄԱՍՏԻՃԱՆԱԵՄՆ ԳՐԱԴԵԵՆՏԻ ԵՎ ՈՒԼՏՐԱՁԱՅՆԱՅԻՆ ՏԱՏԱՆՈՒՄՆԵՐԻ ԱՁԴԵՑՈՒԹՑԱՄԲ

Ա. Ռ. ՄԿՐՏՉՅԱՆ, Ռ. Գ. ԳԱՐՐԻԵԼՅԱՆ, Հ. Ա. ԱՍԼԱՆՅԱՆ, Ա. Հ. ՄԿՐՏՉՅԱՆ, Խ. Վ. ՔՈԹԱՆջՅԱՆ

Հոդվածը նվիրված է տարբեր ալիջային ճակատ ունեցող ռենտզենյան ճառագայβների ֆոկուսացմանը և դեֆոկուսացմանը բյուրեղներում ջերմաստիճանային գրադիենտի և ուլտրաձայնային տատանումների աղդեցությամբ։

FOCUSING AND DEFOCUSING OF X RADIATION UNDER THE ACTION OF TEMPERATURE GRADIENT AND ULTRASONIC OSCILLATIONS

A. R. MKRTCHYAN, R. G. GABRIELYAN, H. A. ASLANYAN, A. G. MKRTCHYAN, KH. V. KOTANDZHYAN

The phenomenon of focusing and defocusing of diffracted X radiation with different wave fronts in crystals under the action of temperature gradient and ultrasonic oscillations has been investigated in detail.