УДК 535.14

ГРУППИРОВКА И АНТИГРУППИРОВКА ФОТОНОВ В СПЕКТРЕ ИЗЛУЧЕНИЯ АТОМА, ИНДУЦИРОВАННЫЕ РЕЗОНАНСНЫМ ПОЛЕМ

г. ю. крючков

Институт физических исследований АН АрмССР

(Поступила в редакцию 5 мая 1984 г.)

Исследуются временные корреляции между фотонами спектральных линий атома в лазерном поле. Приводится метод вычисления смешанных спектральных и временных корреляционных функций интенсивностей для многоуровневого атома. Получены результаты для атома при наличии двухфотонного возбуждения.

1. Введение

Многофотонные процессы на атоме в поле излучения приводят к корреляциям между рассеянными фотонами. В работах [1—4] исследовалась временная корреляция между фотонами линий с частотами ω , $\omega \pm \Omega$ резонансной флуоресценции на двухуровневом атоме. Спектральные линии выделялись частотными фильтрами с разрешением Δv , таким, что $\Gamma \ll \Delta v \ll \Omega$ (ω — лазерная частота, Ω — частота Раби, Γ — ширина линий излучения). Было найдено, что фотоны из одинаковых боковых линий антигруппируются во времени, а излучение из различных линий $\omega \pm \Omega$ имеет свойство группировки [1, 2]. Эффект группировки был обнаружен экспериментально в работе [3].

. Корреляция между фотонами линий с частотами Ω_1 и Ω_2 с временной задержкой т между ними описывается корреляционной функцией интенсивностей [4]

$$g_{1,2}(r,t,\tau) = \langle E_1^{(-)}(r,t) E_2^{(-)}(r,t+\tau) E_2^{(+)}(r,t+\tau) E_1^{(+)}(r,t) \rangle, \tag{1}$$

где

$$E_{1,2}^{(+)}(r,t) = \int_{0}^{\infty} d\tau \, e^{-t\Omega_{1,2}\tau} \, f(\tau) \, E^{(+)}(r,t-\tau) \tag{2}$$

есть компонента напряженности поля излучения $E^{(+)}$ с выделенной фильтром частотой в окрестности Ω_1 или Ω_2 , $E^{(\pm)}$ — положительно- и отрицательно-частотные части поля излучения, $f(\tau)$ — функция фильтра [5].

В настоящей работе исследуются корреляционные функции (1) для случая многоуровневого атома в монохроматическом поле, когда различные спектральные линии излучения не перекрываются, $|\Omega_1 - \Omega_2| \gg$

 Γ_1 , Γ_2 , и при t, $\tau \gtrsim (\Delta v)^{-1} \gg |\Omega_1 - \Omega_2|^{-1}$. В разделе 3 приводятся результаты для двухуровневой системы, в разделе 4—для атомной системы при наличии двухфотонного резонанса между уровнями одинаковой четности.

2. Временная корреляция между фотонами спектральных линий

Линии излучения атома в лазерном поле удобно определять переходами между квазивнергетическими состояниями (КЭС). Учитывая это, спектральным линиям будем сопоставлять определенные переходы между КЭС $|i\rangle$, $|f\rangle$, ..., которые при выключении взаимодействия переходят в соответствующие атомные состояния $|\phi_i\rangle$, $|\phi_f\rangle$, Используя выражения для операторов E^{\pm} через матрицу рассеяния S в представлении КЭС [6]

$$\mathbf{E}^{(\pm)}(r,t) = \overset{+}{S}(t) \, \mathbf{E}_{0}^{(\pm)}(r,t) \, S(t), \tag{3}$$

где $E_0^{(\pm)}$ — свободное поле излучения, в низшем приближении по 1/r при $t'=t-r/c\geqslant 0$ получаем*

$$\mathbf{E}^{(+)}(r, t) = \mathbf{E}_{0}^{(+)}(r, t) + \frac{1}{c^{2}r} \sum_{i,j} \left(\mathbf{d}_{i,i}^{(-)}(t') - \frac{(\mathbf{d}_{i,j}^{(-)}(t') \mathbf{r}) \mathbf{r}}{r^{2}} \right) \mathcal{Q}_{ij}^{2} \rho_{ji}(t'). \quad (4)$$

Величина

$$\rho_{ij}(t) = \overset{+}{S}(t)|i> < j|S(t)$$
 (5)

является матрицей плотности в представлении КЭС [6—8]. При выводе выражения (4) было использовано приближение $\Gamma_{ij} \ll \Omega_{ij}$, где Γ_{ij}^{-1} — ха рактерное время изменения величины $\langle \rho_{ij}(t) \rangle$, и предполагалось, что отрицательно-частотная часть матричного элемента дипольного момента перехода $|i \rangle \rightarrow |j \rangle$ с излучением фотона соответствует лишь одной линии излучения:

$$\mathbf{d}_{il}^{(-)}(t) = e^{-l\Omega_{lj}t} \, \mathbf{d}_{il}^{(-)}(0), \, \mathbf{d}_{il}^{(+)}(t) = (\mathbf{d}_{il}^{(-)}(t))^*. \tag{6}$$

Используя выражение (4), для интенсивности Ω_{ij} линии излучения при переходе $|i> \to |j>$ получаем

$$I_{lj}(r,t) = \langle \mathbf{E}_{lj}^{(-)}(r,t)\mathbf{E}_{jl}^{(+)}(r,t) \rangle = I_{lj}(r) \langle \rho_{il}(t') \rangle, \tag{7}$$

$$I_{lj}(r) = \zeta \left(\frac{\Omega_{lj}^2 \sin \theta}{c^2 r}\right)^2 |\mathbf{d}_{jl}^{(-)}(0)|^2,$$

где t'=t-r/c и θ — угол между векторами d и r. Выражение (7) получено при условиях, что разрешение Δv превышает ширины линий излучения и намного меньше интервалов между линиями излучения. В этом случае вклад функции f (τ) в интенсивность сводится к множителю

^{*} Аналогичные выражения для двухуровневого атома в матричных элементах по атомным состояниям получены, например, в [9].

$$\zeta = (\int_{0}^{\infty} d\tau f(\tau))^{2}.$$

Корреляционная функция $g_{ij,\,kp}$ линий излучения Ω_{ij} и Ω_{kp} выражается через двухвременное среднее $<\rho_{ij}(t')\,\rho_{kk}(t'+\tau)\,\rho_{jl}(t')>$. Учитывая, что уравнения для диагональных составляющих $<\rho_{kk}>$ при $|\Omega_{ij}-\Omega_{kp}|\gg\Gamma_{ij},\,\Gamma_{kp}$ не содержат недиагональных составляющих и являются линейными [6—8], решение можно представить в виде

$$\langle \rho_{kk}(t+\tau) \rangle = \sum_{q} \langle \rho_{qq}(t) \rangle \langle \rho_{kk}(\tau) \rangle_{q},$$
 (8)

где коэффициенты разложения являются элементами матрицы плотности, усредненными по КЭС |q> и вакууму фотонов с начальным условием $<\rho_{kk}(0)>_q=\delta_{kq}$. В результате с помощью теоремы регрессии (см., напр., [7]) получаем

$$\langle \rho_{ij}(t) \rho_{kk}(t+\tau) \rho_{jl}(t) \rangle = \langle \rho_{il}(t) \rangle \langle \rho_{kk}(\tau) \rangle_{j}$$
 (9)

и факторизованный результат для корреляционных функций

$$g_{ij,kp}(r,t,\tau) = I_{ij}(r) I_{kp}(r) \langle \rho_{ii}(t') \rangle \langle \rho_{kk}(\tau) \rangle_{j}$$
 (10)

Физический смысл этого выражения очевиден, так как величина $I_{kp} < \rho_{kk}(\tau) >_j$ есть интенсивность Ω_{kp} линии излучения при условии, что при $\tau = 0$ система находилась в состоянии |j>. При $|\Omega_{ij}^* - \Omega_{kp}|^{-1} \ll \pi \ll \Gamma_{ij}^{-1}$, Γ_{kp}^{-1} имеем

$$g_{ij, jp}(r, t, 0) \geqslant I_{ij}(r, t) I_{jp}(r, t), g_{ij, kp}(r, t, 0) = 0 (j \neq k),$$

т. е. эффект группировки может иметь место между фотонами смежных линий Ω_{ij} и Ω_{jp} . Между фотонами других линий имеет место эффект антигруппировки.

3. Корреляции в двухуровневой системе

Интенсивности спектральных линий двухуровневой системы $(\Omega_{12} = \omega - \Omega, \ \Omega_{21} = \omega + \Omega, \ \Omega_{11} = \Omega_{22} = \omega)$ при $\Omega \gg \gamma$ следующие:

$$I_{12(21)}(r) = \frac{1}{4} (\omega \mp \Omega)^4 \left(1 \mp \frac{\Delta}{\Omega} \right)^2 \left(\frac{\sin \theta}{c^2 r} |\mathbf{d}| \right)^2,$$

$$I_{11}(r) = I_{22}(r) = \frac{V^2}{\Omega^2} \omega^4 \left(\frac{\sin \theta}{c^2 r} |\mathbf{d}| \right)^2,$$
(11)

где $\mathbf{d} = < \varphi_1 |\mathbf{d}| \, \varphi_2 >$, V — матричный элемент перехода, $\Delta = \omega_{21} - \omega$ γ — спонтанная ширина.

Используя известные уравнения для населенностей КЭС при $\Omega\gg\gamma$, получаем

$$<\rho_{11} (\tau>_1 = \bar{\rho}_{11} + \bar{\rho}_{22} e^{-\Gamma \tau}, <\rho_{22} (\tau)>_2 = \bar{\rho}_{22} + \bar{\rho}_{11} e^{-\Gamma \tau},$$
(12)

$$<\rho_{11}(z)>_2=\frac{\bar{\rho}_{11}}{\bar{\rho}_{22}}<\rho_{22}(z)>_1=\bar{\rho}_{11}(1-e^{-\Gamma z}),$$

где

$$\Gamma = \frac{7}{2} \left(1 + \frac{\Delta^2}{\Omega^2} \right), \ \overline{\rho}_{11 (22)} = \frac{1}{2} \left(1 \pm \frac{\Delta}{\Omega} \right)^2 / \left(1 + \frac{\Delta^2}{\Omega^2} \right) -$$

— стационарные (при $t\gg \gamma^{-1}$) населенности КЭС.

В стационарном режиме формулы (10)—(12) переходят в результаты работы [1]. Приведем некоторые дополнения к полученным ранее результатам.

а) При $\Delta \gg |V|$ и произвольном знаке т величина

$$G(r, \tau) = \theta(\tau) g_{12, 21}(r, \tau) + \theta(-\tau) g_{21, 12}(r, |\tau|) =$$

$$= (\omega^2 - \Delta^2)^4 (|V||\mathbf{d}|\sin\theta/c^2r\Delta)^4 \left(\theta(\tau)e^{-\gamma\tau} + \frac{|V|^4}{2^4} + \cdots\right)$$
(13)

описывает экспериментальные результаты работы [3].

6) При $T \ll t$, $\tau \ll \gamma^{-1}$ для случая адиабатического включения взаимодействия за время T, $Q^{-1} \ll T \ll \gamma^{-1}$, получаем

$$g_{12,2:}(r,t,\tau) \simeq \frac{1}{4} I_{12} I_{21} \left[1 - \left(1 + \frac{\Delta}{\Omega} \right)^{2} \gamma \tau + \left(1 - \frac{\Delta}{\Omega} \right)^{2} \gamma t' + \cdots \right],$$

$$g_{21,12}(r,t,\tau) = \frac{1}{4} I_{12} I_{21} \left[\left(1 - \frac{\Delta}{\Omega} \right)^{2} \gamma t' + \cdots \right].$$
(14)

в) Корреляции линий ω и ω ± Ω описываются величинами

$$g_{\omega, \omega+\Omega}(r, t, \tau) = I_{21}I_{11}[\bar{\rho}_{23} + (\langle \rho_{22}(t') \rangle - \bar{\rho}_{23})e^{-\Gamma\tau}],$$

$$g_{\omega, \omega-\Omega}(r, t, \tau) = I_{12}I_{11}[\bar{\rho}_{11} + (\langle \rho_{11}(t') \rangle - \bar{\rho}_{11})e^{-\Gamma\tau}].$$
(15)

В стационарном режиме корреляция пропадает [1], однако она имеет место в переходном режиме $t' \lesssim \gamma^{-1}$. Временная корреляция $\omega \pm \Omega$ линий интерпретируется в рамках теории возмущений по лазерному полю четырехфотонным процессом с поглощением двух лазерных фотонов и излучением $\omega_a = 2\omega - \omega_{21}$ и $\omega_{\beta} = \omega_{21}$ фотонов [3]. Аналогичным образом корреляцию ω , $\omega - \Omega$ линий можно связать с процессом излучения двух фотонов с частотами $\omega_a = \omega$, $\omega_{\beta} = 2\omega - \omega_{21}$ при поглощении трех лазерных фотонов и переходом атома в возбужденное состояние, $\omega_a + \omega_{\beta} = 3\omega - \omega_{21}$ (см. рис. 1α). Корреляция ω , $\omega + \Omega$ линий связана с процессом двухфотонного излучения $\omega_a = \omega$, $\omega_{\beta} = \omega_{21}$, при котором атом высвечивается, $\omega_a + \omega_{\beta} = \omega + \omega_{21}$ (см. рис. 16).

4. Система с двухфотонным возбуждением

Применим результаты раздела 2 к системе с двухфотонным резонансом между уровнями ω_1 и ω_2 одинаковой четности (см. рис. 2) в случае

насыщения $|\omega_{21}-2\,\omega|\ll |W|$ при $|W|\gg \gamma_{23}$, γ_{31} (W- матричный элемент двухфотонного перехода, γ_{23} , γ_{31} — парциальные ширины переходов). Система распадается преимущественно через нерезонансный уровень ω_3 и

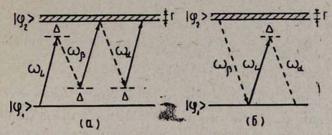


Рис. 1. Нелинейные процессы при $|V| \ll \Delta$ для ил мострации корреляций линий излучения: а) корреляция $\omega - \Omega$, ω ;

6) корреляция $\omega + \Omega$, ω .

представляет физический интерес в связи с преобразованием частоты (см., напр., [10]).

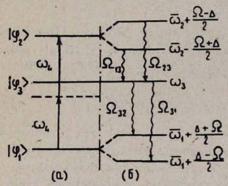


Рис. 2. а) Структура атомных уровней; б) структура квазнуровней; волнистые линии обозначают частоты линий излучения.

Интенсивности спектральных линий

$$\Omega_{23}(13) = \overline{\omega}_{23} \pm |W|, \ \Omega_{31}(32) = \overline{\omega}_{31} \pm |W|$$

нмеют следующий вид:

$$I_{13}(r) = \frac{1}{2} \left(\frac{\Omega_{13}^2 \sin \theta_1}{c^2 r} \right)^2 |\mathbf{d}_1|^2, \ I_{23}(r) = \frac{1}{2} \left(\frac{\Omega_{23}^2 \sin \theta_1}{c^2 r} \right)^2 |\mathbf{d}_1|^2,$$

$$I_{31}(r) = \frac{1}{2} \left(\frac{\Omega_{31}^2 \sin \theta_2}{c^2 r} \right)^2 |\mathbf{d}_2|^2, \ I_{32}(r) = \frac{1}{2} \left(\frac{\Omega_{32}^2 \sin \theta_2}{c^2 r} \right)^2 |\mathbf{d}_2|^2,$$

$$(16)$$

где $\overline{\omega}_l = \omega_l + W_{ll}$, W_{ll} — штарковские сдвиги уровней, $i = 1, 2, d_1 =$ $= \langle \varphi_3 | d | \varphi_2 \rangle$, $d_2 = \langle \varphi_1 | d | \varphi_3 \rangle$, $\theta_{1,2}$ — углы между векторами \mathbf{d}_1 и \mathbf{r} , \mathbf{d}_2 и \mathbf{r} .

Уравнения для населенностей КЭС при $|W| \gg \gamma_{23}$, γ_{31} следующие:

$$\frac{d}{dt} < \rho_{11}(t) > = -\frac{\gamma_{23}}{2} < \rho_{11}(t) > +\frac{\gamma_{31}}{2} < \rho_{33}(t) >,$$

$$\frac{d}{dt} < \rho_{33}(t) > = -\Gamma_1 < \rho_{33}(t) > +\frac{\gamma_{23}}{2}, \ \Gamma_1 = \gamma_{31} + \frac{\gamma_{23}}{2}$$

и приводят к разложению (8) с коэффициентами

$$<\rho_{11}(\tau)>_{2} = <\rho_{22}(\tau)>_{1} = \bar{\rho}_{11} + \frac{\bar{\rho}_{33}}{2}e^{-\Gamma_{1}\tau} - \frac{1}{2}e^{-\frac{\tau_{13}}{2}\tau},$$

$$<\rho_{11}(\tau)>_{3} = <\rho_{22}\tau)>_{3} = \bar{\rho}_{11}(1-e^{-\Gamma_{1}\tau}),$$

$$<\rho_{33}(\tau)>_{1} = <\rho_{33}(\tau)>_{2} = \bar{\rho}_{33}(1-e^{-\Gamma_{1}\tau}),$$

$$<\rho_{33}(\tau)>_{3} = \bar{\rho}_{33} + (1-\bar{\rho}_{33})e^{-\Gamma_{1}\tau},$$

$$\bar{\rho}_{11} = \bar{\rho}_{22} = \gamma_{31}/(2\gamma_{31} + \gamma_{23}), \ \bar{\rho}_{33} = \gamma_{23}/(2\gamma_{31} + \gamma_{23}).$$
(17)

Перечислим некоторые свойства получаемых с помощью (10), (16) и (17) корреляционных функций. Корреляционные функции линий Ω_{13} и Ω_{24} (а также Ω_{23} и Ω_{32})

$$g_{13,31}(r,\tau) = I_{13}(r) I_{31}(r) \bar{\rho}_{11} [\bar{\rho}_{33} + (1 - \bar{\rho}_{33}) e^{-\Gamma_1 \tau}], \qquad (18)$$

$$g_{31, 13}(r, \tau) = I_{13}(r) I_{31}(r) \overline{\rho}_{33} \left[\overline{\rho}_{11} + \frac{\overline{\rho}_{33}}{2} e^{-\Gamma_{17}} + \frac{1}{2} e^{-\frac{T_{17}}{2}\tau} \right]$$

о пис ывают при $|W|^{-1} \ll \tau \ll \gamma_{23}^{-1}$, γ_{31}^{-1} группировку фотонов. При этом отношение числа событий, в которых фотоны линии $\Omega_{13}\left(\Omega_{23}\right)$ излучаются раньше фотонов линии $\Omega_{31}\left(\Omega_{32}\right)$, к числу обратных событий равно

$$g_{13,31}(r,0)/g_{31,13}(r,0) = g_{23,32}(r,0)/g_{32,23}(r,0) = \gamma_{31}/\gamma_{23}.$$
 (19)

При $\gamma_{31} \ll \gamma_{23}$ вследствие неравенства $\rho_{33} \gg \rho_{11}$, ρ_{22} это отношение много меньше 1. К группировке фотонов приводит также корреляция линий Ω_{13} и Ω_{32} (а также Ω_{23} и Ω_{31}), однако число событий, в которых излучение фотонов линий Ω_{32} , Ω_{31} предшествует излучению соответственно линий Ω_{13} , Ω_{23} , равно нулю.

Свойством антигруппировки обладают корреляции фотонов одинаковых линий (как и в случае двухуровневой системы) и корреляции между линиями Ω_{13} и Ω_{23} , а также Ω_{32} и Ω_{31} , которые соответствуют дублету Аутлера-Таунса.

Автор выражает благодарность М. Л. Тер-Микаеляну и С. Я. Килину за обсуждения.

ЛИТЕРАТУРА

- 1. Apanasevich P. A., Kilin S. Ja. J. Phys., B12, 183 (1977).
- Cohen-Tannoudji C., Reynaud S. Philos. Trans. Roy. Soc. London, A293, 223 (1979).
- 3. Aspect A. et al. Phys. Rev. Lett., 45, 671 (1980).
- 4. Arnoldus H. F., Nienhuis G. J. Phys., B17, 963 (1984).
- 5. Eberly J. H., Wodkiewich K. J. Opt. Soc. Am., 67, 1252 (1977).
- 6. Крючков Г. Ю. ЖЭТФ, 83, 1992 (1982).
- 7. Cohen-Tannoudji C., Reynaud S. J. Phys., B10, 354 (1977).
- 8. Kryzhanovsky B. V., Melikian A. O. Opt. Comm., 29, 164 (1979).
- 9. Ackerhalt J. R., Eberly J. H. Phys. Rev., D10, 3350 (1974).
- Zhang P.-L., Wang Y.-C., Shawlow A. L. J. Opt. Soc. Am., B. Optical Phys., 1, 9 (1984).

ՌԵԶՈՆԱՆՍԱՅԻՆ ԴԱՇՏՈՎ ԻՆԴՈՒԿՑՎԱԾ ՖՈՏՈՆՆԵՐԻ ԽՄԲԱՎՈՐՈՒՄԸ ԵՎ ՀԱԿԱԽՄԲԱՎՈՐՈՒՄԸ ԱՏՈՄԻ ՃԱՌԱԳԱՅԹՄԱՆ ՍՊԵԿՏՐՈՒՄ

4. 301. 403019404

Հետազոտված է լազերային դաշտում ատոմի ձառագայթման կոմպոնենտների ժամանակային կոռելյացիաների վիճակագրությունը։ Բերված է բազմամակարդակ ատոմի խառը-սպեկտրալ և ժամանակային կոռելյացիոն ֆունկցիաների հաշվման մեթոդ։ Ստացված են նոր արդյունջներ երկմակարդակ և եռամակարդակ ռեզոնանսային սիստեմների համար։

RESONANT FIELD INDUCED BUNCHING AND ANTIBUNCHING OF PHOTONS IN THE RADIATION SPECTRUM OF AN ATOM

G. Y., KRYUCHKOV

The statistics of correlation times between two events of the emission of photons from the components of the radiation spectrum of an atom in a laser field has been investigated. A method for the calculation of mixed, spectral-temporal correlation functions for a multilevel atom is presented. New data for two- and three-level atomic systems were obtained.