УДК 621.384.65

ИСКРИВЛЕНИЕ ИНТЕНСИВНОГО РЕЛЯТИВИСТСКОГО ЭЛЕКТРОННОГО ПУЧКА В КОЛЬЦЕВЫХ ДИЭЛЕКТРИЧЕСКИХ СТРУКТУРАХ

Р. А. АКОПОВ, О. Г. АНТАБЛЯН, С. В. ДАВТЯН, Е. К. ХАНИКЯНЦ. НИИ физики конденсированных сред ЕГУ

(Поступила в редакцию 28 ноября 1983 г.)

Экспериментально исследуется распространение интенсивного релятввистского электронного пучка (ИРЭП) по круговой траектории с постоянным раднусом кривизны, реализуемое на основе отражения пучка от диэлектрической поверхности. Опробованы кривые каналы в виде круглого и прямоугольного волноводов, а также диэлектрические и металлические желоба. Эффективность транспортировки для диэлектрического желоба при азимутальном угле $\theta = 60^\circ$, $P = 2 \cdot 10^{-1}$ Торр достигает величины $I \tau p / I_0 = 95\%$. Обсуждается дальнейшее направление исследований по захвату ИРЭП на замкнутую орбиту с использованием отражения пучка от плавменных слосв.

Проблема создания кольцевых сильноточных электронных сгустков, циркулирующих на стационарной орбите R = const, может стать актуальной в связи с решением некоторых физических задач, например, задачи повышения КПД преобразования энергии интенсивного релятивистского электронного пучка (ИРЭП) в излучение миллимстрового и субмиллиметрового диапазонов длин волн [1]. Известно большое число теоретических и экспериментальных работ, посвященных созданию кольцевых электронных сгустков с использованием эффекта «зеркального» отражения ИРЭП от проводящей поверхности [2—4]. Отражение реализуется при условии $\partial I/\partial t \neq 0$ и ограничено по длительности временем распада обратных токов в нейтрализующей плазме и в материале отражателя.

В последнее время ведутся исследования процесса взаимодействия ИРЭП с границей сред, имеющих частотную дисперсию. Такой средой при отсутствии внешних полей может служить плазменный слой, обладающий диэлектрической проницаемостью тензорного типа [5]. Одним из результатов этих работ является вычисление в явном виде выражения для поперечной силы взаимодействия между плазменным слоем и пучком, движущимся на малых расстояниях от слоя. Зависимость силы от расстояния между пучком и плазменным слоем имеет вид $F(x) \sim 1/x$.

Эта сила, которая является отталкивающей, обусловлена взаимодействием магнитного поля пучка с полем индукционных токов, возбуждаемых пучком в плазменном слое. По механизму образования и характеру зависимости от расстояния эта сила сходна с силой, возникающей при зеркальном отражении от проводящего слоя [6], однако из-эз большой разницы проводимостей абсолютная величина силы в случае плазменного слоя существенно меньше.

Известно, что транспортировка ИРЭП через диэлектрический волновод сопровождается оседанием части электронов пучка на стенки волновода, что приводит к возникновению потенциала. При достижении потенциалом порогового значения (~ 30 кВ/см) происходит пробой по поверхности диэлектрика и образуется слой пристеночной плазмы с плотностью ~ 10¹² см⁻³ [7]. При пролете не полностью скомпенсированного по заряду пучка над дивлектрической поверхностью, когда диссипация является ощутимой, описанный выше процесс приводит к образованию плазменного слоя на поверхности дивлектрика и взаимодействие пучка с этим плазменным слоем можно описать теорией, развитой в [5]. Таким образом, при определенных экспериментальных условиях можно ожидать реализации отражения ИРЭП от дивлектрической поверхности.

Для проверки этих рассуждений нами проведены предварительные измерения по отражению ИРЭП от поверхности диэлектрика. На рис. 1 приведены результаты измерений по исследованию зависимости угла отклонения β и потерь интенсивности пучка $\eta = (I_o - I_{\tau p})/I_o$ от угла падения α . Расстояние между осью пучка и поверхностью диэлектрика с $\varepsilon = 2,5$ при $\alpha = 0$ равно $r_{\rm s}$, газом-наполнителем является воздух, давление в камере — 0,1 Торр. На рисунке приведены также идентичные кривые в случае медного отражателя (при давлении P = 0,5 Торр). Из графиков следует наличие заметной силы отражения при прохождении ИРЭП над поверхностью. По абсолютному значению эта сила меньше, чем сила.

Puc. 2.

Рис. 1. Зависимости угла отражения β и коэффициента потерь η от угла падения α для металлического (Ο, •) и диэлектрического (□, •) отражателей.

Рис. 2. Распределение плотности пучка по раднусу камеры для диэлектрического (О) и металлического (П) желобов при разных значениях прицельного параметра: a) x = r/r = 1; b) x = 2; b) x = 3.

возбуждаемая в случае металлического отражателя, однако она достаточна для отклонения пучка на углы до $\beta = 35^{\circ}$ без существенной деформации профиля пучка (при скользящем падении). Сравнительно большая потеря интенсивности при этом связана с механизмом образования пристеночной плазмы. Наличие «хвоста» кривой при углах падения $\beta \gtrsim 45^\circ$, по-видимому, объясняется конечным эначением градиента плотности пристеночной плазмы в направлении нормали к поверхности пластины, что приводит к определенной толщине плазменного слоя. Это увеличивает зону взаимодействия пучка с плазмой, и поперечная сила успевает оттолкнуть пучок от пластины. Ход кривой потерь интенсивности в случае диэлектрика положе кривой в случае металлического отражателя, благодаря чему потери в случае дивлектрика при угле $\beta = 30^\circ$ становятся меньше, чем в случае металлического отражателя.

Эти результаты подтверждают предположение о существовании условий, при которых ИРЭП, распространяющийся на малом расстоянии от диэлектрической поверхности, может отражаться от него.

Настоящая работа посвящена экспериментальному исследованию распространения ИРЭП в различных круглых диэлектрических системах. а также в металлическом желобе с целью оптимизации условий захвата пучка на круговую орбиту постоянного радиуса с использованием эффекта отражения пучка от пристеночной плазмы, образованной на поверхности диэлектрика. Измерения проводились на ускорителе электронов с параметрами пучка E_a = 400 кэВ, I_a = 10 кА, т_{ими} = 25 нс [1]. Камера измерений представляла собой стальной цилиндр с внутренним диаметром 80 см и высотой 10 см. Пучок вводился в камеру по касательной к окружности с раднусом 35 см через диэлектрический конус. Титановая фольга толщиной в 20 мкм отделяла объем вакуумного диода от камеры измерений. Днаметр пучка на выходе из конуса составлял 30 см. После конуса пучок попадал в круговые каналы днаметром 75 см. Камера была снабжена поясом Роговского и емкостным делителем для контроля тока и потенциала инжектируемого в камеру пучка, тремя попарно вмонтированными поясами Роговского и емкостными делителями, расположенными на азимутах 90, 180 и 270° от входа для контроля зарядовой и токовой нейтрализации по траектории. Окно на днище камеры предназначалось для проведения СВЧ интерферометрии пристеночной плазмы на длинах волн 4 MM # 3 CM.

Распределение плотности тока пучка по радиусу камеры, а также интегральный ток на разных азимутах анализировались многосекционным цилиндром Фарадея (СЦФ), закрепленным на поворотном механизме. СЦФ устанавливался во всем диапазоне азимутальных углов 0—360°. Для проведения качественных измерений вместо СЦФ монтировался сцинтилляционный детектор, свечение которого фотографировалось и фотометрировалось. По величине тормозного излучения на вольфрамовой проволоке, которое анализировалось фотоэлектронным умножителем ФЭУ-36, оценивались интенсивность и время жизни пучка на орбите. Камера была снабжена также окнами для проведения различных измерений (ИКспектрометрия, ленгмюровские зонды и т. д.). Электрические сигналы, поступающие от поясов Роговского, СЦФ, емкостных делителей, анализировались двумя осциллографами 6ЛОР-4, срабатывающими синхронно.

Из-за нестабильности параметров ускорителя от выстрела к выстрелу при снятии каждого экспериментального значения использовались резуль-

таты измерений пяти срабатываний. Среднеквадратичная ошибка почти всех измерений не превышает 20% и на графиках ошибки не указаны.

В работе [1] приведены результаты исследований по транспортировке ИРЭП через кривые диэлектрические каналы. Одним из результатов работы является установление существования некоторого минимального радиуса кривизны для данного типа волновода, ниже которого из-за конечной эмиссионной способности стенок транспортировка неосуществима. Очевидно, что эффективность транспортировки $I_{\rm тр}/I_{\rm 0}$ через кривые участки сильно зависит от параметров канала: радиуса кривизны, материала, формы и т. д.

На установке были проведены измерения І тр / Іо для некоторых каналов в зависимости от азимутального угла. Давление воздуха в камере составляло Р = 0,5 Торр. Были опробованы каналы с круглым (диаметр 50 мм) и прямоугольным (50×150 мм²) сечениями, изготовленные из диэлектрика, а также металлический и диэлектрический желоба высотой 50 мм и глубиной 200 мм. Радиус кривизны наружных стен всех каналов составлял 37,5 см. Как следует из результатов измерений, транспортировка наименее эффективна в круглом канале, где пучок рассыпается уже пои азимуте $\theta = 110^\circ$. Интенсивность пучка до углов, меньших 60°, почти монотонно убывает, а при углах $\theta > 60^\circ$ скорость потерь замедляется и хвост кривой простирается до углов $\theta = 110^\circ$. Такой характер поведения, по-видимому, связан со срывом при углах $\theta > 60^\circ$ поверхностного разряда, так как в этом случае количество осевших на стенки электронов недостаточно для достижения потенциалов, необходимых для возникновения поверхностного разряда, т. е. отклонение пучка при углах $\theta > 60^\circ$ в этом случае имеет электростатический характер [6]. Большая скорость диссипации пучка при $\theta < 60^\circ$ связана с повышенными требованиями к плотности пристеночной плазмы для обеспечения эффективной нейтрализации пучка максимальной по сравнению с остальными каналами плотности. Ход коивой для прямоугольного канала существенно положе, так как увеличение сечения канала приводит к уменьшению плотности тока пучка в 4 раза. Поэтому срыв поверхностного разряда происходит при большем значении азимутального угла (~ 120°).

До углов $0 = 140^{\circ}$ самым эффективным является металлический желоб. Однако при больших углах эффективность $I_{\tau p}/I_{\circ}$ резко падает и при угле $\theta = 190^{\circ}$ практически равна нулю. Такой ход эффективности, существенно отличающийся от результатов [3], по-видимому, связан с малой величнной тока на входе в канал (~8 кА). Сравнительно эффективно отраженный в начальной части канала пучок отходит от стенок, из-за чего величина индукционного тока падает, а диссипация на боковых стенках еще более снижает полный ток. Отражение становится мало эффективным и пучок рассыпается. Сильная, почти пороговая зависимость условия захвата от полного тока отмечается в [2].

При углах $\theta > 180^{\circ}$ приемлемую эффективность в данном случае имеет только диэлектрический желоб. Требования к интенсивности оседающих на стенки электронов здесь еще более ослаблены, так как добавочная нейтрализация требуется только с наружной стороны, а с внутренней стороны пучок нейтрализуется объемной плазмой газа-наполнителя.

Эффективность захвата и дальнейшая транспортировка ИРЭП в конвых каналах существенно зависит от качества инжекции и быстрого установления равновесных значений параметров пучка, в первую очередь оаднуса и эмиттанса. В проведенных экспериментах выяснилось, что вариа ция прицельного параметра $x = r/r_b$, где r — расстояние центра пучка от наружной стенки, г, — раднус пучка, оказывает существенное влияние на всю динамику процесса захвата ИРЭП на круговую орбиту. На рис. 2 приведены экспериментальные кривые распределения плотности тока пучка по раднусу для значений x = 1, 2, 3 в диэлектрическом и металлическом желобах при азимутальном угле $\theta = 60^\circ$. Давление в канале P = 0.5 Торр. На рис. 2а приведено распределение для случая инжекции по касательной к камере и x = 1. Для обоих желобов инжекция происходит с большими потерями интенсивности и характеризуется затяжным процессом установления равновесных параметров. Пучок широко распределен по радиусу канала. При x = 2 (рис. 26) имеются оптимальные условия захвата. Уже при θ = 60° пучок довольно хорошо локализирован по радиусу (равновесный радиус ~ 30 см). В данном случае при $R_{\text{рави/}} R_{\kappa} = 0,92$ для металлического и ≈ 0,85 для дивлектрического желобов, где R_k — радиус канала, достигаются соответственно максимальные плотности 320 и 250 А/см².

Увеличение прицельного параметра до x = 3 приводит к «отскоку» пучка от стенки канала (рис. 28). В этом случае формируется удаленный от стенки локализованный пучок с почти симметричным распределением по раднусу. Коэффициент транспортировки $I_{rp}/I_0 = 0.95$ также высок, однако при дальнейшем продвижении по азимуту происходит быстрый спад и при углах $\theta \gtrsim 160^{\circ}$ пучок рассыпается. Такой «отскок» наблюдался и в работе [3]. Увеличение высоты желобов до 10 см приводит к еще более сильной зависимости эффективности инжекции и захвата от x [2].

Давление и состав нейтрального газа сильно влияют на отношение $I_{\rm rp}/I_0$ как в металлических, так и в дивлектрических каналах [8]. Эти факторы существенны также в экспериментах по созданию электроннокольцевых сгустков. Приведенные на рис. 3 графики представляют завн-

Рис. 3. Зависимость коэффициента транспортировки $I_{\rm TP}/I_0$ от давления остаточного газе для круглого (\bigcirc) и прямоугольного (\Box) каналов, а также для металлического (\diamondsuit) и диэлектрического (\triangle) желобов.

симости от давления газа для четырех каналов. Измерения проводились для значений x = 1 и $\theta = 60^{\circ}$ в атмосфере воздуха. Из графиков следует, что оптимальное давление для разных каналов разное. Кривая зависимости для металлического жалоба близка к кривой, снятой для прямого цилиндрического канала [8]. Здесь спад для больших давлений круче, чем в прямых каналах, и при P = 20 Торр практически $I_{ro} / I_0 = 0$. Как и ожидалось, максимальная эффективность достигается в диэлектрическом желобе при сравнительно низких давлениях. Но при давлениях $P < 10^{-1}$ Торр из-за недостаточной зарядовой нейтрализации пучок в желобе начинает интенсивно расширяться к центру канала и при $P = 10^{-2}$ Торр эффективность прямоугольного канала становится выше, чем эффективность желоба.

. Резюмируя все результаты, можно констатировать, что реализация захвата на круговую орбиту в металлическом желобе в условиях нашего эксперимента затруднена. Это связано, во-первых, со сравнительно небольшим значением полного тока, используемого в экспериментах ($I_n = 10$ кА). С другой стороны, одновременно трудно выполняются условия $f_e = n_e/n_b \approx 1$ и $f_m = I_{0\delta p}/I_B \ll 1$, где f_e и f_m — соответственно коэфициенты зарядовой и токовой нейтрализации [2].

При реализации захвата в диэлектрических каналах перспективными, по-видимому, являются замкнутые каналы с достаточно большим поперечным сечением. Для увеличения времени жизни пучка на орбите захват и удержание должны осуществляться при малых давлениях газа, что выполнимо при использовании диэлектрического канала [1]. Наконец, для предотвращения потерь интенсивности пучка на образование пристеночной плазмы нужно использовать предварительно синтезированные плазменные слои [5] с плотностями порядка 10¹⁴ см⁻³ и с достаточно большим градиентом, что экспериментально также вполне реализуемо.

ЛИТЕРАТУРА

- 1. Аколов Р. А., Антаблян О. Г., Ханикяну Е. К. Изв. АН АрмССР, Физика, 18, 121 (1983).
- 2. Вейнгарат В. Ф., Григорьев В. П., Преслер Л. В. ЖТФ, 52, 1324 (1982).
- 3. Тузов В. А. Кандидатская диссертация. Томск, 1979.
- 4. Ходатаев К. В. Атомная энергия, 32, 379 (1972).
- 5. Григорьев В. П., Исаев Г. П. Деп. в Изв. вузов, сер. физ., 12 апр. 1982, № 2639-82.
- 6. Диденко А. Н., Рябчиков А. И. Изв. вузов, Физика, № 10, 27 (1979).
- 7. Агафонов А. В. н др. Физика плазмы, 7, 267 (1981).
- 8. Акопов Р. А. н др. ЖТФ, 54, 1284 (1983).

ԻՆՏԵՆՍԻՎ ՌԵԼՅԱՏԻՎԻՍՏԻԿ ԷԼԵԿՏՐՈՆԱՅԻՆ ՓՆՋԻ ՇԵՂՈՒՄԸ ՇՐՋԱՆԱՁԵՎ ԴԻԷԼԵԿՏՐԻԿ ԿԱՌՈՒՑՎԱԾՔՆԵՐՈՒՄ

A. U. 2UMAPAN, D. S. ULPUPISUL, U. J. SUJPSUL, D. S. BULBASULS

Фяратратраций հղանшկаվ հետաղոտվում են դիէլեկտրիկ մակերևույթներից վնջի անդրադարձման միջոցով իրականացված ինտենսիվ ռելյատիվիստիկ էլեկտրոնային փնջի տարածումը հաստատուն կորության շառավղով շրջագծային հետագծով։ Փորձարկված են շրջանաձև և ուղդանկյունաձև կտրվածքով կոր ալիքատարեր, ինչպես նաև դիէլեկտրիկ և մետաղական ճոռեր։ Տեղափոխման էֆեկտիվությունը դիէլեկտրիկ ճոռի համար $\theta = 60^{\circ}$ աղիմուտալ անկյան և $P = 2 \times 10^{-1}$ տորը ճնշման դեպքում համում է $I_{ro}/I_0 = 95\%$:

THE CURVING OF AN INTENSE RELATIVISTIC ELECTRON BEAM, IN CIRCULAR DIELECTRIC STRUCTURES

R, A. AKOPOV, O. G. ANTABLYAN, S. V. DAVTYAN, E. K. KHANIKYANTS

The propagation of an intense relativistic electron beam along a circular path with constant radius of curvature realized on the basis of beam reflection from a dielectric surface was investigated experimentally. Curved channels in the form of circular and rectan - gular waveguides as well as dielectric and metallic troughs were probed. The efficiency of beam transport for the dielectric trough at the azimuthal angle $\theta = 60^{\circ}$ with $P = 2 \cdot 10^{-1}$ torr reaches $I_{\rm tr}/I_0 \approx 95\%$. Further investigations on the capture of the intense relativistic electron beam on a closed orbit using the beam reflection from plasma layers are discussed.

STREAM REPORT AND A STREAM

and prove the spine way the ball the state