УДК 577.352.2

РАДИАЛЬНЫЙ ПРОФИЛЬ ЭНЕРГИИ ИОНА В ИОННОМ КАНАЛЕ МЕМБРАНЫ

В. Б. АРАКЕЛЯН

Ереванский физический институт

С. Б. АРАКЕЛЯН

Всесоюзный проектно-экспериментальный конструкторский и технологический институт, Ереван

(Поступила в редакцию 5 мая 1983 г.)

Рассчитан радиальный профиль энергии иона в грамицидиновом, амфотерициновом и аламетициновом каналах мембраны. Определен эффективный радиус взаимодействия иона со стенками канала. Показано, что в случае грамицидинового канала взаимодействие ионов Li^+ и Na^+ со стенками канала существенно, а для ионов K^+ , Rb^+ и Cs^+ такое взаимодействие не существенно. Показано также, что вблизи оси канала энергетический профиль имеет вид параболы.

Анализ экспериментов по транспорту ионов в мембранах проводится на основе теоретических расчетов энергии активации переноса иона из водной фазы в ионный канал [1—3]. Все эти расчеты проведены для случая, когда ион находится на оси канала. Однако при таком подходе невозможно вычислить энергию взаимодействия иона со стенками канала в случае, когда ион находится вблизи стенки. Хотя очевидно, что имснио этот случай позволяет определить эффективный радиус взаимодейстьия иона со стенками канала и, таким образом, в каждом конкретном случае (данный канал и данный ион) оценить, существенно или нет взаимодействие иона с каналом при транспорте иона.

1. Как и в [1, 2], примем, что канал представляет собой цилиндрическую трубку с дивлектрической проницаемостью ε_k в бесконечной среде с дивлектрической проницаемостью ε_m . Задачу решим в цилиндрической системе координат. Ось z направим вдоль оси канала, имеющего радиус b, и пусть координаты иона в канале есть ρ_0 , ϕ_0 , z_0 . Для потенциала Φ_k нона в канале имеем уравнение

$$\Delta \Phi_{k} = -\frac{e}{\varepsilon_{0} \varepsilon_{k} \rho} \delta(\rho - \rho_{0}) \delta(\varphi - \varphi_{0}) \delta(z - z_{0}), \qquad (1)$$

где е — заряд иона. Заметим, что потенциал Ф_к должен быть конечным на оси канала.

В мембранной фазе зарядов нет и для потенциала имеем уравнение

$$\Delta \Phi_{\mu} = 0. \tag{2}$$

Потенциал Ф, на бесконечности должен обратиться в нуль. К уравнениям (1) и (2) нужно добавить условия на пранице раздела канал-мембранная фаза:

$$\Phi_{k|p=b} = \Phi_{\mu|p=b},$$

$$k \frac{\partial \Phi_{k}}{\partial \rho}\Big|_{\rho=b} = \epsilon_{M} \frac{\partial \Phi_{M}}{\partial \rho}\Big|_{\rho=b}.$$
(3)

Решение уравнения (1) ищем в виде

$$\Phi_{k} = \frac{1}{2\pi^{2}} \sum_{m=--}^{\infty} e^{im(q-\tau_{0})} \int_{0}^{\infty} R_{m} (kp) \cos k (z-z_{0}) dk.$$
(4)

Подставив (4) в (1), для R_m получим уравнение

$$\frac{1}{\rho}\frac{d}{d\rho}\left(\rho\frac{dR_m}{d\rho}\right) - \left(k^2 + \frac{m^2}{\rho^2}\right)R_m = -\frac{e}{\varepsilon_0 \varepsilon_k \rho}\delta(\rho - \rho_0).$$
(5)

Решив последнее уравнение способом, описанным в [4], для случая р. ≤ р ≤ в имеем

$$R_m = \frac{e}{\varepsilon_0 \varepsilon_k} [K_m (kp) I_m (kp_0) + D_m I_m (kp) I_m (kp_0)], \qquad (6)$$

где Im и Km — модифицированные функции Бесселя первого и второго рода порядка *m*, а D_m — неизвестный коэффициент. При $\rho \le \rho_0$ нужно в (6) поменять местами ρ и ρ₀. Подставив (6) в (4), получим решение для Φ.

Легко показать, что общее решение (2) имеет вид

$$\Phi_m = \frac{e}{2\pi^2 \varepsilon_0 \varepsilon_M} \sum_{m=-\infty}^{\infty} e^{lm (\varphi - \varphi_0)} \int_0^{\infty} A_m K_m (k\varphi) \cos k (z - z_0) dk, \qquad (7)$$

где Am — неизвестный коэффициент. Из граничных условчи (3) для Am и D_т получаем выражения

$$A_{m} = \frac{R I_{m} (k_{P_{0}})}{1 - kb (R - 1) K'_{m} (kb) I_{m} (kb)},$$

$$(8)$$

$$kb (R - 1) K'_{m} (kb) K_{m} (kb)$$

$$D_m = \frac{1}{1-kb(R-1)K_m(kb)} \frac{1}{I_m(kb)}$$

 $D_m =$

Учитывая, что

где

$$\frac{1}{|\mathbf{r}-\mathbf{r}_0|} = \frac{2}{\pi} \sum_{m=-\infty}^{\infty} e^{im(\varphi-\varphi_0)} \int_0^{\varphi} I_m(k\rho_0) K_m(k\rho) \cos k (z-z_0) dk$$
(9)

(в (9), как и в (6), при ρ ≤ ρ₀ нужно поменять местами ρ и ρ₀), перепишем Фк в виде

$$\Phi_{k} = \frac{e}{4\pi\epsilon_{0}\epsilon_{k}} \left(\frac{1}{|\mathbf{r}-\mathbf{r}_{0}|} + \frac{2}{\pi} \sum_{m=-\infty}^{\infty} e^{im(z-z_{0})} \times \int_{0}^{z} D_{m} I_{m} (kp) I_{m} (kp_{0}) \cos k (z-z_{0}) dk \right), \qquad (10)$$

тде первый член соответствует собственно потенциалу Φ_e нона, а второйпотенциалу Φ_n , созданному поляризационными зарядами, который можно записать в виде

$$\Phi_{n} = \frac{e}{4\pi\varepsilon_{0}\varepsilon_{k}} \left\{ \frac{4}{\pi} \int_{0}^{\infty} \cos k \left(z - z_{0} \right) \left[\frac{1}{2} D_{0} I_{0} \left(kp \right) I_{0} \left(kp_{0} \right) + \right. \right. \\ \left. + \sum_{m=1}^{\infty} \cos m \left(\varphi - \varphi_{0} \right) D_{m} I_{m} \left(kp \right) I_{m} \left(kp_{0} \right) \right] dk \right\} \cdot$$
(11)

2. Энергию взаимодействия иона со стенками поры вычислим по формуле

$$W = \int_{0}^{c} \Phi_{n} (\rho = \rho_{0}, \ \varphi = \varphi_{0}, \ z = z_{0}) \ de'.$$
(12)

Подставив (11) в (12), получим выражение

$$W = \frac{e^2}{2\pi^2 \varepsilon_0 \varepsilon_k b} \int_0^\infty dy \left[\frac{1}{2} D_0 I_0^2 \left(\frac{y \rho_0}{b} \right) + \sum_{m=1}^\infty D_m I_m^2 \left(\frac{y \rho_0}{b} \right) \right]. \tag{13}$$

Представляет интерес величина $W(\rho_0 \rightarrow 0)$. Оставив квадратичные члены, из (13) находим

$$W \simeq \frac{e^2}{4\pi^2_{\phi_0 c_k} b} \left(\int_0^{\infty} D_0 dy + \frac{\rho_0^2}{2b^2} \int_0^{\infty} y^2 (D_0 + D_1) dy \right) , \qquad (14)$$

откуда следует, что вблизи оси канала энергетический профиль имеет вид параболы. Заметим, что при $\rho_0 = 0$ выражение (13) совпадает с результатом работы [1].

3. Применим полученные результаты для анализа некоторых особенностей хорошо изученных искусственных каналов: грамицидина, амфотерицина и аламецитина. На рис. 1 и 2 представлены энергетические профили для случая $\varepsilon_{\rm M} = 2$ и $\varepsilon_{\rm R} = 80$. Из рисунков следует, что эффективный радиус взаимодействия иона со стенками канала $\rho^* \sim 0,1$ нм (здесь ρ^* определяется как расстояние, на котором взаимодействие иона со стенками канала выше теплового фона kT, где k — постоянная Больцмана, T — температура).

Так как радиусы амфотерицинового и аламецитинового каналов больше, чем ρ^* (рис. 2*a*, *б*), то следует ожидать, что взаимодействие ионов со стенками каналов будет слабым. Этот факт наблюдается на эксперименте [5]. Для голмицидинового канала, радиус которого соизмерим с ρ^* , ситуация иная. Рассмотрим этот случай более подробно. На рис. 1а представлен радиальный профиль энергии иона в канале, рассчитанный по точной формуле (13) (кривая 1) и по приближенной формуле (14) (кривая 2). Из рисунка следует, что вблизи оси канала приближенная форму-

Рис. 1. Радиальный профиль энергии иона в грамицидиновом канале.

ла (14) достаточно хорошо описывает энергетический профиль. Заметим, что на рис. 1а ион рассматривается как точечный заряд. На рис. 16 учтен также потенциал взаимодействия типа твердых сфер иона со стенками канала. Чтобы не загромождать рис. 16 на нем приведены профили только

Рис. 2. Радиальный профиль энергии иона в амфотерициновом (а) и аламецитиновсм (б) каналах.

для ионов Li^+ (кривая 1) и K^+ (кривая 2). На рис. 16 видно, что энергия взаимодействия со стенкой поры для Li^+ (можно показать, что это верно и для ионов N_a^+) выше теплового фона kT, а для K^+ (а также для Rb^+ и Cs^+)—ниже kT. Таким образом, при прохождении ионов L_i^+ и N_a^+ их взаимодействие со стенками поры существенно, а для K^+ , Rb^+ и Cs^+ это взаимодействие не существенно. Этот факт подтверждается также экспериментально [5].

ЛИТЕРАТУРА

1. Parsegian V. A. Ann. N. Y. Acad. Sci., 246, 161 (1975).

2. Jordan P. C. Biophysical Chemistry, 13, 203 (1981).

3. Levitt D. G. Biophys. J., 22, 209 (1978).

4. Джексон Дж. Классическая электродинамика. Изд. Мир. М., 1965.

5. Итоги науки и техники ВИНИТИ. Бнофиз. мембраны, 2, 82 (1981).

ԻՈՆԻ ԷՆԵՐԳԻԱՅԻ ՇԱՌԱՎՂԱՅԻՆ ՊՐՈՖԻԼԸ ՄԵՄԲՐԱՆԻ ԻՈՆԱՅԻՆ ԿԱՆԱԼՈՒՄ

4. P. UAUPDISUL, U. P. UAUPDISUL

Աշխատանքում հաշվված է մեմբրանի դրամիցիդինային, ամֆոտերիցինային և ալամեցիտինային կանալներում իոնի էներդիայի շառավղային պրոֆիլը։ Որոշված է կանալի պատերի -Տետ իոնի փոխաղդեցունյան արդյունավետ շառավիղը։ ծույց է արված, որ Li+ և Na + իոնների փոխաղդեցունյունը պատերի Տետ գրամիցիդինային կանալի դեպքում էական է, իսկ K+, Rb+ L Cs + իոնների Տամար այդ փոխաղդեցունյունը էական չէ։ ծույց է տրված նաև, որ կանալի առանցցի մոտակայթում իոնի էներդետիկ պրոֆիլը ունի պարաբոլի տեսը։

THE RADIAL PROFILE OF THE ENERGY OF AN ION LOCATED IN THE IONIC CHANNEL OF MEMBRANES

V. B. ARAKELYAN, S. B. ARAKELYAN

The radial profile of the energy of an ion located in gramicidin, amphotericin, alamethic induced channels of a membrane is calculated. The effective radius of the interaction of an ion with channel walls is determined and it is shown that in the case of gramicidin induced channel the interaction of Li^+ and Na^+ with the channel walls is substantial, while that for K^+ , Rb^+ and Cs^+ is negligible. It is also shown that the energy profile of the ion located near the channel axis is of parabolic shape.