УДК 538.56;539.12

РЕНТГЕНОВСКОЕ ПЕРЕХОДНОЕ ИЗЛУЧЕНИЕ В СЛУЧАЕ ТЕЛ КОНЕЧНЫХ РАЗМЕРОВ

М. А. АГИНЯН, А. С. АМБАРЦУМЯН, ЯН ШИ

Ереванский физический институт

(Поступила в редакцию 29 июля 1983 г.)

Исследованы угловое и частотное распределения интенсивности рентгеновского переходного излучения (РПИ), образуемого в телах конечных размеров. Уточнен критерий применимости теории возмущений. Рассмотрено образование РПИ на вакансионных порах в кристаллах.

Рентгеновское переходное излучение, образуемое при взаимодействии релятивистских заряженных частиц с малыми телами, было исследовано в работах [1—4]. В работе [5] было рассмотрено РПИ на дефектах кристаллической решетки твердого тела — вакансионных порах — с точки зрения его использования для исследования вакансионной структуры твердых тел.

В настоящей работе более подробно, чем в [4], исследованы угловое и частотное распределения интенсивности РПИ, образуемого частицей на аксиально-симметричных неоднородностях малых размеров. В качестве неоднородностей рассмотрены как тела, расположенные в вакууме, так и вакуумные поры в среде. Проведено сравнение полученных результатов с оценками работы [5].

1. Исходные формулы

• Будем полагать, что диэлектрическая проницаемость среды в рассматриваемой области частот определяется формулой

$$\varepsilon(\omega) = 1 - \omega_0^2 / \omega^2 \tag{1}$$

(ω — частота излучения, ω_0 — плазменная частота вещества) и, кроме того, выполняется условие применимости теории возмущений [6] (см. также [2])

$$\omega_0^2 \, \alpha_z / \omega c \ll 1 \tag{2}$$

 $(a_x - продольный размер неоднородности). Отметим, что условие (2),$ будучи достаточным, не является необходимым. Если поперечные размеры неоднородности малы, то теория возмущений может быть применимойи без выполнения (2) (подробно см. ниже, п. 4).

Рассмотрим два случая: когда траектория частицы совпадает с осью симметрии неоднородности (центральное столкновение) и когда траектория проходит вне тела параллельно его оси симметрии (нецентральное столкновение). Соответствующие частотно-угловые распределения имеют вид (ср. с формулами (15), (16) работы [2]):

$$W^{\epsilon}(\omega, \vartheta) = \frac{e^2}{2\pi c} \left(\frac{\omega_0}{\omega}\right)^4 \frac{(1-\varepsilon\beta^2)}{\varepsilon^3} |P^{\epsilon}|^2 \cos^2 \vartheta \sin \vartheta, \qquad (3)$$

$$W^{nc}(\omega, \vartheta, \varphi) = \frac{e^2}{(2\pi)^2 c} \left(\frac{\omega_0}{\omega}\right)^4 \frac{(1-\epsilon\beta^2)}{\epsilon^3} [K_1(\chi\rho_0)]^2 \times |P^{nc}|^2 (1-\sin^2\vartheta\cos^2\varphi), \qquad (4)$$

где

$$P^{c} = \frac{\omega^{2}}{[v^{2}} \int_{0}^{a} p(\rho, \lambda) f_{1}(x\rho) K_{1}(\chi\rho) \rho d\rho, \qquad (5)$$

$$P^{nc} = \frac{\omega^2}{v^*} \int_0^{a_\perp} p(\rho, \lambda) f_0(x\rho) \rho d\rho, \qquad (6)$$

$$p(\rho, \lambda) = \frac{\omega}{\upsilon} \int_{-a_z}^{a_z} \exp\left[i(\omega/\upsilon - \lambda)z\right] dz, \qquad (7)$$

$$\lambda = (\sqrt{\varepsilon}\omega/c)\cos\vartheta, \ \chi = \omega \ (1 - \varepsilon\beta^2)^{1/2}/\nu, \ \varkappa = (\sqrt{\varepsilon}\omega/c)\sin\vartheta,'$$

v — скорость заряда, $\beta = v/c$, J_0 , J_1 и K_1 — функции Бесселя и Макдональда, ϑ и φ — полярный и азимутальный углы излучения, ρ_0 — прицельный параметр при нецентральном столкновении, a_{\perp} — поперечный размер неоднородности. Формулы (3)—(7) приведены для случая вакуумной поры в среде. В случае тела в вакууме необходимо в этих формулах заменить ε на 1.

Предположим, что как продольный, так и поперечный размеры неоднородности намного больше длины волны генерируемого излучения:

$$a_z \gg c/\omega, \quad a_\perp \gg c/\omega.$$
 (8)

Тогда в частотно-утловых распределениях (3) и (4) определяющую роль играют малые углы ϑ из-за наличия функций $J_i(\varkappa \rho)$ и $J_o(\varkappa \rho)$ в выражениях (5) и (6) и функции $\exp[i(\omega/\upsilon - \lambda)z]$ в выражении (7). После интегрирования по ρ и z в формулах (5), (6) и (7) будем иметь [2, 4]

$$P^{c} = p \frac{x_{1}/x_{2} + x_{1}J_{2}(x_{1})K_{1}(x_{2}) - x_{2}J_{1}(x_{1})K_{2}(x_{2})}{1 - \beta^{2}\varepsilon\cos\vartheta}, \qquad (9)$$

$$P^{nc} = p \frac{x_1 \int_1 (x_1)}{\varepsilon \sin^2 \vartheta}, \qquad (10)$$

$$p = \frac{2 \sin \left[\left(\omega a_z / v \right) \left(1 - \beta \sqrt{\varepsilon} \cos \vartheta \right) \right]}{1 - \beta \sqrt{\varepsilon} \cos \vartheta}, \qquad (11)$$

 $r_{Ae} x_1 = xa_{\perp}, x_2 = \chi a_{\perp}.$

2. Анализ угловых распределений и частотных спектров

Дальнейшее рассмотрение целесообразно проводить в двух предельных случаях: когда аргумент функций K_1 и K_2 в выражении (9) велик я когда этот аргумент мал.

Пусть х₂ ≫ 1, т. е.

$$a_{\perp} \gg (c/\omega) \ (1 - \varepsilon \beta^2)^{-1/2}. \tag{12}$$

Тогда излучение при нецентральном столкновении экспоненциально мало из-за большой величины аргумента функции K_1 в (4). Для центрального столкновения это условие означает, что «радиус действия» поля мал по сравнению с поперечным размером объекта, и приводит к подробно исследованному ранее случаю пластины в вакууме (или вакуумного отсека в веществе) [7] (см. также [4]).

Пусть теперь аргументы функций К, и К, в (9) малы, т. е.

$$a_{\perp} \ll (c/\omega) \ (1 - \epsilon \beta^2)^{-1/2}.$$
 (13)

Последующий анализ частотно-угловых распределений (3) и (4) проведем для тела в вакууме (во всех формулах (3)—(13) є заменяется на 1), поскольку, как это показано ниже, для вакуумной поры в веществе качественная картина остается такой же.

Как известно, угловое распределение РПИ, образуемого на неоднородностях, имеющих неограниченные поперечные размеры (на границах раздела сред, на пластине и т. д.), имеет характерный максимум при $\sim \gamma^{-1} (\gamma = (1 - \beta^2)^{-1/2}$ лоренц-фактор частицы) благодаря налич ию в соответствующих формулах знаменателя 1— β cost. Аналогичные знаменатели имеются и в (9), и в (11). Однако оказывается, что в случае ограниченных неоднородностей максимум в угловом распределении определяется также и поперечными размерами.

Введем углы

$$\vartheta_1 = (2 c/\omega a_z)^{1/2}, \quad \vartheta_2 = c/\omega a_\perp,$$
 (14)

определяющие соответственно аргументы синуса в выражении (11) и функций Бесселя в (9), (10). Из (13) ($\varepsilon = 1$) следует, что $\gamma^{-1} \ll \vartheta_2$ В случае $\gamma^{-1} \gtrsim \vartheta_1$ интенсивность РПИ пренебрежимо мала (см., например, [4]). Если же $\gamma^{-1} \ll \vartheta_1$, то результат зависит от соотношения углов ϑ_1 и ϑ_2 .

1. Пусть ∂₂ < ∂₁, т. е.

$$a_z < 2 \omega a_\perp^2 / c. \tag{15}$$

Разлагая величины (9)—(11) в интервале углов $\vartheta < \vartheta_2 < \vartheta_1$, имеем

$$P^{c} = \frac{\omega a_{z}}{\upsilon} \left(\frac{\omega a_{\perp}}{c}\right)^{2} \frac{\gamma \vartheta}{2}, \quad P^{nc} = \frac{\omega a_{z}}{\upsilon} \left(\frac{\omega a_{\perp}}{c}\right)^{2}. \tag{16}$$

Поэтому в этом интервале углов

$$\mathcal{K}^{c}(\omega,\vartheta) = \frac{e^{s}}{8\pi c^{7}} \omega_{0}^{4} \omega^{2} a_{z}^{2} a_{\perp}^{4} \vartheta^{3}, \qquad (17)$$

$$W^{nc}(\omega, \vartheta) = \frac{e^2}{2\pi c^5} \omega_{\theta}^4 a_z^2 a_{\perp}^4 \frac{\vartheta}{\rho_0^2}$$
(18)

Из (17) и (18) следует, что при $\vartheta \sim \gamma^{-1} \ll \vartheta_2$ величины W^c (ω , ϑ) и $W^{nc}(\omega, \vartheta)$ не имеют максимумов. При угле излучения порядка ϑ_2 или больше x_1 есть величина порядка единицы или больше и из-за функций Бесселя в (9) и(10) величины $W^c(\omega, \vartheta)$ и $W^{nc}(\omega, \vartheta)$ будут иметь ряд максимумов и минимумов, обусловленных интерференцией на границах цилиндрического тела в поперечных направлениях («краях»). При увеличении угла ϑ до значения ϑ_1 или больше появляются также экстремумы, обусловленные интерференцией на границах тела в подольном направлении («торцах»). Когда ϑ_1 и ϑ_2 отличаются друг от друга незначительно, указанные два типа интерференции смешиваются и их невозможно отделить [4].

Первые максимумы θ₀ в угловых спектрах излучений приходятся на, углы порядка с/ωа_⊥:

$$\vartheta_0^c \approx 3.8c/\omega a_\perp, \quad \vartheta_0^{nc} \approx 1.8c/\omega a_\perp. \tag{19}$$

При дальнейшем увеличении угла излучения до значений $\vartheta \gg \vartheta_i$, функциями Бесселя в $|P^c|^2$ (формула (9)) можно пренебречь, в $|P^{nc}|^2$ (формула (10)) — заменить их квадрат на постоянную C_o — максимальное значение функции J_1^2 , а квадрат синуса в величине p^2 (формула (11)) — заменить на 1/2. После интегрирования (3), (4) по углам ϑ и φ соответственно в пределах от 0 до $\pi/2$ и от 0 до 2π получаем следующие выражения для частотных спектров излучения W^c (ω) и W^{nc} (ω):

$$W^{c}(\omega) \approx \frac{e^{2}}{\pi c^{3}} \frac{\omega_{0}^{4}}{\omega^{2}} a_{z}^{2} \left[\ln \frac{\omega a_{\perp}^{2}}{c a_{z}} + C_{1} \right], \qquad (20)$$

$$W^{nc}(\omega) \approx \frac{e^3}{\pi c^3} \frac{\omega_0^4}{\omega^2} \left(\frac{a_{\perp}}{\rho_0}\right)^2 a_z^2 C_0 \left[\ln \frac{\omega a_{\perp}^2}{c a_z} + C_2 \right]$$
(21)

 $(C_i, C_2 -$ числа порядка единицы). 2. Пусть теперь $\vartheta_i < \vartheta_2$, т. е.

$$a_z > 2 \omega a_\perp^2/c. \tag{22}$$

Анализ угловых распределений W^c (ω , ϑ) и $W^{nc}(\omega, \vartheta)$ проводится аналогично предыдущему случаю. Разница лишь в том, что теперь группа экстремумов, обусловленных интерференцией на «торцах» тела, находится левее (при меньших углах) труппы экстремумов, обусловленных интерференцией на «краях» тела. Главные максимумы теперь приходятся на углы ϑ_0 порядка $(c/\omega a_z)^{1/2}$:

$$\vartheta_0^c \approx \vartheta_0^{nc} \approx (\pi c/\omega a_s)^{1/2}.$$
 (23)

Оценка спектральной интенсивности РПИ дает:

$$W^{c}(\omega) \approx \frac{e^{2}}{\pi c^{5}} \omega_{0}^{4} a_{\perp}^{4} \left[\frac{1}{8} \ln \frac{ca_{z}}{\omega a_{\perp}^{2}} + C_{3} \right], \qquad (24)$$

$$W^{nc}(\omega) \approx \frac{3}{4} \frac{e^2}{\pi c^4} \frac{\omega_0^4}{\omega} \frac{a_{\perp}^4 a_z}{\rho_0^2} , \qquad (25)$$

где С. — число порядка единицы. 300

3. Численный расчет

Проведенный выше анализ углового распределения интенсивности РПИ проиллюстрирован нами численным расчетом (рис. 1 и 2) для различных значений a_z и a_{\perp} с использованием формул (3), (4), (9)—(11). Положения первых максимумов хорошо согласуются с оценками по формулам (19) и (23). Таким образом, главные максимумы в угловых рас-

пределениях РПИ при выполнении условия (13) действительно приходятся не на углы порядка γ^{-1} , а определяются интерференцией на границах тел, а именно, меньшим из углов ϑ_1 и ϑ_2 . Наличие интерферен-

Рис. 2.

Рис. 1. Частотно-угловое распределение интенсивности излучения для центрального столкновения при $a_x = 10^{-2}$ мкм: сплошные кривые — тело в вакууме, штриховые — вакуумная пора в среде (кривые $1 - a_{\perp} = 10^{-3}$, $2 - 3,2 \cdot 10^{-3}$, $3 - 10^{-2}$, $4 - 3,2 \cdot 10^{-2}$ мкм; $\hbar \omega = 3,2 \cdot 10^{-1}$ кэВ). Рис. 2. То же, что на рис. 1, для нецентрального столкновения при $a_{\perp} = 10^{-3}$ мкм: кривые $1 - a_{2} = 2,5 \cdot 10^{-3}$, $2 - 6,3 \cdot 10^{-3}$, $3 - 1,6 \cdot 10^{-2}$ мкм;

ционных экстремумов при углах порядка ϑ_1 и ϑ_2 хорошо известно также в теории дифракции света на тонких клиньях и круглых отверстиях или экранах (см., например, [8]).

Путем численного интегрирования $W^c(\omega, \vartheta)$ и $W^{nc}(\omega, \vartheta)$ по углам излучения получены частотные спектры интенсивности $W^c(\omega)$ и $W^{nc}(\omega)$ (рис. 3, 4) при различных значениях a_{\perp} . Если в случае нецентрального столкновения спектр носит монотонный характер, то в случае центрального столкновения он может быть немонотонным со слабым максимумом при $\omega \sim c\gamma/a_{\perp}$. На рис. 5 приведены кривые зависимости частотной интенсивности РПИ в случае центрального столкновения от величины a_{\perp} при некоторых фиксированных частотах. Как следует из этого рисунка, при выполнении условий (13) и (22) величина $W^c(\omega)$ пропорциональна a_{\perp}^4 (формула (24)), затем в соответствии с (20) зависимость

Рис. 4. То же, что на рис. 3, для нецентрального столкновения при $a_{\perp} = 10^{-2}$ мкм: кривые $1 - a_{z} = 1,6 \cdot 10^{-3}, 2 - 2,5 \cdot 10^{-3}, 3 - 6,3 \cdot 10^{-3}$ мкм;

 $p_0 = 10^{-2}$ MRM.

Рис. 5. Зависимость частотного спектра излучения при центральном столкновении от a_{\perp} при $\gamma = 10^2$, $a_z = 10^{-2}$ мкм: кривые, $1 - \hbar \omega = 0.4$, 2 - 0.25 квВ.

нотонной. Что касается зависимостей $W^c(\omega)$ и $W^{nc}(\omega)$ от γ , то при $\gamma \ll (\omega a_z/2 c)^{1/2}$ спектральные интенсивности малы и растут пропорционально γ^4 , становясь затем логарифмически зависящими от γ , пока $\gamma < \omega a_\perp/c$. При дальнейшем росте γ спектральные интенсивности вообще перестают зависеть от γ . После интегрирования $W^c(\omega)$ и $W^{nc}(\omega)$ по ω в широких пределах полные интенсивности оказываются очень слабо зависящими от γ .

i

4. Критерий применимости теории возмущений

Условие (2) применимости теории возмущений было получено, строго говоря, в случае бесконечных поперечных размеров тела [6]. Физически ясно, что при выполнении указанного условия теория возмущений применима и для тела с конечными поперечными размерами. Естественно поставить вопрос, применима ли теория возмущений, когда продольный размер тела не удовлетворяет условию (2), но поперечные размеры тела малы? Рассмотрим предельный случай бесконечно длинного цилиндрического тела ($a_z \rightarrow \infty$). При этом будем предполагать, что величина a_\perp намного меньше «радиуса» поля заряда:

$$\sqrt{\tau^{-2} + \omega_0^2 / \omega^2} \, \omega a_\perp / c \ll 1 \tag{26}$$

(в случае вакуумного канала в среде) или

$$\mathbf{z}_{\perp} \omega/c\gamma \ll 1$$
 (27)

(в случае материального тела в важууме).

Из уравнения (1) работы [2] следует, что асимптотическое выражение для $\mathbf{E}_{pac}^{(1)}(\mathbf{r}, \omega)$ вдали от тела ($p \gg a_{\perp}$) в первом приближении теории возмущений с учетом (26) или (27) имеет вид:

$$\mathbf{E}_{\mathrm{pac}}^{(1)}(\mathbf{r},\omega) = \pm \frac{e}{\pi} \frac{\omega_0^2 \chi}{v^3} \left(\frac{\alpha_{\perp}}{2}\right)^2 \exp\left(i\omega z/v\right) \left[K_1(\chi \rho) \mathbf{e}_{\rho} + \frac{v\chi}{i\omega} K_0(\chi \rho) \mathbf{e}_z\right]$$
(28)

 $(r = \rho e_{\rho} + z e_{z}, где e_{z}, e_{\rho} - единичные векторы, направленные соответ$ $ственно вдоль и поперек оси цилиндра). Знаки <math>\mp$ соответствуют случаям тела в вакууме и вакуумной поры в среде. Во втором приближении теории возмущений имеем

$$\mathbf{E}_{pac}^{(2)}(\mathbf{r}, \ \omega) = \mathbf{E}_{pac}^{(1)}(\mathbf{r}, \omega) \left[1 \mp \frac{\omega_{0}^{2}}{c^{2}} \left(\frac{a_{\perp}}{2} \right)^{2} \right].$$
(29)

Из формул (28) и (29) следует, что при выполнении неравенства

$$\omega_0 a_\perp/c \ll 1 \tag{30}$$

поправка во втором приближении незначительна.

Таким образом, теория возмущений применима не только при выполнении условия (2), но и при одновременном выполнении условий (26) и (30) (или (27) и (30)). Если рассмотреть область значений $\gamma \gg \omega/\omega_{e}$, то получим, что условие (30) также является достаточным для применимости теории возмущений.

Критерий применимости теории возмущений, полученный в работе [5] путем сравнения поля рассеянной волны с невозмущенным полем, содержит угол излучения ϑ . Мы же сравнивали не только рассеянное поле с невозмущенным полем $E_{sap}(\mathbf{r}, \omega)$, но и величины поля $E_{pac}(\mathbf{r}, \omega)$ в первом и во втором приближениях, что более правомерно. В случае вакуумных пор в среде этот критерий имеет вид

$$\min\left\{\frac{\omega_0^2 a_z}{\omega c}; \sqrt{\gamma^{-2} + \frac{\omega_0^2}{\omega^2}} \frac{\omega a_\perp}{c}\right\} \ll 1.$$
(31)

Если $a_{\perp} \sim a_z$, указанное условие практически сводится к условию (2).

5. Цепочка и решетка ваканснонных пор

Рязановым [5] было рассмотрено возникновение переходного излучения на упорядоченной системе (цепочке или решетке) вакансионных пор в кристаллах. Автор справедливо отметил, что по возникающему переходному излучению можно получить информацию о вакансионной пористости твердых тел. Кроме того, автором предлагалось использовать кристаллы с вакансионными порами в качестве источников рентгеновского излучения. Приведенная при этом оценка отношения чисел излучаемых квантов с единицы длины пути частицы через цепочку вакансионных пор и через макроскопическую стопку пластин без учета поглощения излучения была весьма оптимистической.

Необходимо заметить, что интенсивность (число квантов) переходного излучения, испускаемого из стопки пластин, существенно зависит от отношений толщины *a* пластины и размера *b* вакуумных промежутков межау пластинами к соответствующим зонам $z_{\text{вещ}}$ и $z_{\text{вак}}$ формирования переходного излучения в веществе и в вакууме (см. например, [9]). В области энергий квантов в несколько сотен эВ, $\gamma \sim 10 \ z_{\text{вещ}}$ и $z_{\text{вак}}$ составляют десятые доли мкм ($\hbar \omega \sim 30$ эВ), т. е. по порядку величины они примерно вовпадают с расстояниями между вакансионными порами в кристаллах, в то время как макроскопическая стопка пластин с *a* и *b* порядка нескольких сотен мкм (именно с такой стопкой проводилось сравнение в [5]) является весьма «неоптимальной» с точки эрения генерации излучения в указанной области частот.

Если же рассматривать, например, область энергий квантов в десятки кэВ, $\gamma \sim 10^3 - 10^4$, где $z_{\text{вещ}}$ порядка десятков мкм, а $z_{\text{вак}}$ — сотен мкм, ситуация становится совершенно иной. Например, макроскопическая стопка более чем из 150 алюминиевых пластин с a = 20 мкм и b = 400 мкм в области $\hbar \omega \sim 20$ —50 кэВ может излучить приблизительно один квант (длина поглощения излучения в алюминии при $\hbar \omega = 30$ къВ составляет примерно 3000 мкм). Цепочка же вакансионных пор в алюминии с раднувом поры $\sim 10^{-2}$ мкм и расстоянием между порами $\sim 10^{-1}$ мкм в лучшем случае может излучить $10^{-5} - 10^{-6}$ квантов с длины поглощения.

Таким образом, приходим к выводу, что кристалл с вакансионными поради может служить источником излучения, по-видимому, только в области очень мятких рентгеновских лучей ($\hbar \omega \sim 500-800$ »В), для которой зоны формирования имеют примерно такой же порядок, что и размеры и расстояния между порами.

Наконец рассмотрим кристалл с вакансионными порами с точки зрения детектирования релятивистских заряженных частиц. Как отмечалось в конце п. 3, интенсивность излучения, возникающего на одной отдельной поре, перестает зависеть от у при условии

$$\gamma > \max \{ \omega a_z/c, \ \omega a_\perp/c \}.$$
(32)

В случае цепочки или решетки пор ситуация является сходной, пока z_{вещ} меньше расстояния между порами. Когда же z_{вещ} порядка этого расстояния или больше, γ-зависимость интенсивности (числа квантов) переходного излучения весьма слаба. Если положить $a_z \sim a_\perp \sim 10^{-2}$ мкм, $\hbar \omega \sim 500$ »В, то из (32) следует, что интенсивность излучения зависит от у только при у < 25. Другими словами, если и возможно использование кристалла с вакансионными порами в качестве детектора заряженных частиц, то только в случае частиц не очень высоких энергий.

В заключение авторы выражают глубокую благодарность Г. М. Гарибяну за ценные обсуждения и постоянный интерес к работе.

ЛИТЕРАТУРА

- 1. Бахшян Г. Г., Гарибян Г. М., Ян Ши. Астрофизика, 9, 371 (1973).
- 2. Амбарцумян А. С., Гарибян Г. М., Ян Ши. Изв. АН АрмССР, Физика, 10, 258 (1975).
- 3. Амбаруумян А. С., Ян Ши. Изв. АН АрмССР, Физика, 12, 320 (1977).
- 4. Амбариумян А. С., Ян Ши. Препринт ЕФИ-511 (54)-81, 1981.
- 5. Рязанов А. И. ЖЭТФ, 82, 34 (1982).
- 6. Гарибян Г. М., Ян Ши. ЖЭТФ, 61, 930 (1982).
- 7. Гарибян Г. М. Изв. АН СССР, сер. физ., 36, 754 (1962).
- 8. Ландсберг Г. С. Оптика. Изд. Наука, М., 1976.
- 9. Гарибян Г. М., Ян Ши. Рентгеновское переходное излучение. Изд. АН АрмССР, Ереван, 1983.

ԴԵՆՏԳԵՆՅԱՆ ԱՆՅՈՒՄԱՅԻՆ ՃԱՌԱԳԱՅԹՈՒՄԸ ՎԵՐՋԱՎՈՐ ՉԱՓԵՐՈՎ ՄԱՐՄԻՆՆԵՐԻ ՎՐԱ

U. U. USPLEUL, U. U. LUUPUPLPLALUSUL, SUL CP

Հետաղոտված են վերջավոր չափերով մարմինների վրա առաջացած ռենադենյան անցումա. յին ձառադայիման ինտենսիվության բաշխումները ըստ անկյան և հաճախության։ Ճշդրաված է խոտորումների տեսության կիրառելիության չափանիշը։

X-RAY TRANSITION RADIATION IN BODIES OF FINITE DIMENSIONS

M. A. AGINYAN, A. S. AMBARTSUMYAN, C. YANG

The angular and frequency distributions of the intensity of X-ray transition radiation formed in bodies of finite dimensions are investigated. The criterion of the applicability of perturbation theory approximation is verified. The generation of X-ray transition radiation on the crystal vacancy holes is discussed.