ARMENIAN JOURNAL OF MATHEMATICS Volume 4, Number 1, 2012, 44–48

Fuzzification of Ideals and Filters in Γ -Semigroups

A. Iampan

Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand aiyared.ia@up.ac.th

Abstract

In this paper, we characterize the relationship between the fuzzy ideals (fuzzy filters) and the characteristic mappings of fuzzy ideals (fuzzy filters) in Γ -semigroups.

Key Words: fuzzy ideal, fuzzy filter, characteristic mapping, Γ -semigroup Mathematics Subject Classification 2000: 20M99, 20N25

1 Introduction and Prerequisites

The notion of a Γ -semigroup was introduced by Sen [7] in 1981 and that of fuzzy sets by Zadeh [10] in 1965, the fuzzy set theories developed by Zadeh and others have found many applications in the domain of mathematics and elsewhere. Rosenfeld [3] was the first who studied fuzzy sets in the structure of groups.

As we know, Γ -semigroups are a generalization of semigroups. The algebraic structures of Γ -semigroups were studied by many authors, for example, Prince Williams, Latha and Chandrasekeran [2] studied the fuzzification of bi- Γ -ideals in Γ -semigroups and investigate some of their related properties. Uçkun, Öztürk and Jun [9] studied the intuitionistic fuzzification of several types of a Γ -ideal in Γ -semigroups. Chinram [1] studied rough prime ideals and rough fuzzy prime ideals in Γ -semigroups. Sardar, Davvaz and Majumder [6] studied interior ideals of Γ -semigroups and investigate some of their basic properties.

In this paper, we consider a fuzzification of the concepts of a Γ -subsemigroup, an ideal and a filter in Γ -semigroups and some properties of such Γ -subsemigroups, ideals and filters are investigated. **Definition 1.** Let M be a set. A fuzzy subset of M is an arbitrary mapping $f: M \to [0, 1]$ where [0, 1] is the unit segment of the real line.

Definition 2. Let M be a set and $A \subseteq M$. The characteristic mapping $f_A \colon M \to [0,1]$ defined via

$$x \mapsto f_A(x) := \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

By the definition of characteristic mapping, f_A is a mapping of M into $\{0,1\} \subset [0,1]$. Hence f_A is a fuzzy subset of M.

Definition 3. [7] Let M and Γ be any two nonempty sets. Then (M, Γ) is called a Γ semigroup if there exists a mapping $M \times \Gamma \times M \to M$, written as $(a, \gamma, b) \mapsto a\gamma b$, satisfying
the following identity $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. A nonempty
subset K of M is called a Γ -subsemigroup of M if $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$.

Definition 4. Let (M, Γ) be a Γ -semigroup.

- (i) A nonempty subset A of M is called a left ideal of M if $M\Gamma A \subseteq A$.
- (ii) A nonempty subset A of M is called a right ideal of M if $A\Gamma M \subseteq A$.
- (iii) A nonempty subset A of M is called an ideal of M if it is both a left and a right ideal of M. That is, $M\Gamma A \subseteq A$ and $A\Gamma M \subseteq A$.

Definition 5. Let (M, Γ) be a Γ -semigroup. A Γ -subsemigroup F of M is called a filter of M if for any $a, b \in M$ and $\gamma \in \Gamma, a\gamma b \in F$ implies $a, b \in F$.

Definition 6. Let (M, Γ) be a Γ -semigroup.

- (i) A fuzzy subset f of M is called a fuzzy left ideal of M if $f(a\gamma b) \ge f(b)$ for all $a, b \in M$ and $\gamma \in \Gamma$.
- (ii) A fuzzy subset f of M is called a fuzzy right ideal of M if $f(a\gamma b) \ge f(a)$ for all $a, b \in M$ and $\gamma \in \Gamma$.
- (iii) A fuzzy subset f of M is called a fuzzy ideal of M if it is both a fuzzy left and a fuzzy right ideal of M. That is, $f(a\gamma b) \ge f(b)$ and $f(a\gamma b) \ge f(a)$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Definition 7. Let (M, Γ) be a Γ -semigroup. A fuzzy subset f of M is called a fuzzy filter of M if $f(a\gamma b) = \min\{f(a), f(b)\}$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Definition 8. Let (M, Γ) be a Γ -semigroup. A fuzzy subset f of M is called a fuzzy Γ -subsemigroup of M if $f(a\gamma b) \ge \min\{f(a), f(b)\}$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Definition 9. Let (M, Γ) be a Γ -semigroup and f a fuzzy subset of M. The mapping

$$f': M \to [0,1]$$
 defined via $f'(x) = 1 - f(x)$

is a fuzzy subset of M called the complement of f in S.

Definition 10. Let (M, Γ) be a Γ -semigroup. A fuzzy subset f of M is called prime if $f(a\gamma b) \leq \max\{f(a), f(b)\}$ for all $a, b \in M$ and $\gamma \in \Gamma$.

2 Main Results

In this section, we give some interesting characterizations of the fuzzy ideals (fuzzy filters) and the characteristic mappings of fuzzy ideals (fuzzy filters) in Γ -semigroups.

Lemma 1. Let (M, Γ) be a Γ -semigroup and f a fuzzy subset of M. Then the following statements are equivalent:

- (i) $f(x\gamma y) = \min\{f(x), f(y)\}$ for all $x, y \in M$ and $\gamma \in \Gamma$.
- (ii) $f'(x\gamma y) = \max\{f'(x), f'(y)\}$ for all $x, y \in M$ and $\gamma \in \Gamma$.

Proof. Assume that $f(x\gamma y) = \min\{f(x), f(y)\}$ for $x, y \in M$ and $\gamma \in \Gamma$. Without loss of generality, we may assume that $f(x\gamma y) = f(x)$. Then $f(x) \leq f(y)$, so $f'(x\gamma y) = 1 - f(x\gamma y) = 1 - f(x) = 1 - f(x) = 1 - f(x) \geq 1 - f(y) = f'(y)$. Hence $f'(x\gamma y) = \max\{f'(x), f'(y)\}$.

Conversely, assume that $f'(x\gamma y) = \max\{f'(x), f'(y)\}$ for $x, y \in M$ and $\gamma \in \Gamma$. Without loss of generality, we may assume that $f'(x\gamma y) = f'(x)$. Then $f'(x) \ge f'(y)$, so $1 - f(x\gamma y) =$ 1 - f(x) and $1 - f(x) \ge 1 - f(y)$. Thus $f(x\gamma y) = f(x)$ and $f(x) \le f(y)$. Hence $f(x\gamma y) =$ $\min\{f(x), f(y)\}$.

Proposition 1. Let (M, Γ) be a Γ -semigroup and $\emptyset \neq K \subseteq M$. Then K is a Γ -subsemigroup of M if and only if the fuzzy subset f_K is a fuzzy Γ -subsemigroup of M.

Proof. Obviously, f_K is a fuzzy subset of M. Let $x, y \in M$ and $\gamma \in \Gamma$. If $x \notin K$ or $y \notin K$, then $f_K(x) = 0$ or $f_K(y) = 0$ and so $f_K(x\gamma y) \ge 0 = \min\{f_K(x), f_K(y)\}$. Let $x, y \in K$. Then $f_K(x) = f_K(y) = 1$. Since $x\gamma y \in K\Gamma K \subseteq K$, we have $f_K(x\gamma y) = 1$. Thus $f_K(x\gamma y) = 1 \ge 1 = \min\{f_K(x), f_K(y)\}$. Therefore the fuzzy subset f_K is a fuzzy Γ -subsemigroup of M.

Conversely, let $x, y \in K$ and $\gamma \in \Gamma$. Then $f_K(x) = f_K(y) = 1$. Since f_K is a fuzzy Γ -subsemigroup of M, we have $f_K(x\gamma y) \ge \min\{f_K(x), f_K(y)\} = 1$. Thus $f_K(x\gamma y) = 1$ and so $x\gamma y \in K$. Therefore K is a Γ -subsemigroup of M. \Box

Proposition 2. Let (M, Γ) be a Γ -semigroup and $\emptyset \neq A \subseteq M$. Then A is a prime subset of M if and only if the fuzzy subset f_A is a prime fuzzy subset of M.

Proof. Obviously, f_A is a fuzzy subset of M. Let $x, y \in M$ and $\gamma \in \Gamma$. If $x\gamma y \notin A$, then $f_A(x\gamma y) = 0 \leq \max\{f_A(x), f_A(y)\}$. Let $x\gamma y \in A$. Then $f_A(x\gamma y) = 1$. Since A is a prime subset of M, we have $x \in A$ or $y \in A$. Thus $f_A(x) = 1$ or $f_A(y) = 1$ and so $f_A(x\gamma y) = 1 \leq 1 = \max\{f_A(x), f_A(y)\}$. Therefore the fuzzy subset f_A is a prime fuzzy subset of M.

Conversely, let $x, y \in M$ and $\gamma \in \Gamma$ be such that $x\gamma y \in A$. Then $f_A(x\gamma y) = 1$. Since f_A is a prime fuzzy subset of M, we have $1 = f_A(x\gamma y) \leq \max\{f_A(x), f_A(y)\}$. Thus $f_A(x) = 1$ or $f_A(y) = 1$ and so $x \in A$ or $y \in A$. Therefore A is a prime subset of M. \Box

Proposition 3. Let (M, Γ) be a Γ -semigroup and $\emptyset \neq L \subseteq M$. Then L is a left ideal of M if and only if the fuzzy subset f_L is a fuzzy left ideal of M.

Proof. Obviously, f_L is a fuzzy subset of M. Let $x, y \in M$ and $\gamma \in \Gamma$. If $y \notin L$, then $f_L(y) = 0$ and so $f_L(x\gamma y) \ge 0 = f_L(y)$. Let $y \in L$. Then $f_L(y) = 1$. Since $x\gamma y \in M\Gamma L \subseteq L$, we have $f_L(x\gamma y) = 1$. Thus $f_L(x\gamma y) = 1 \ge 1 = f_L(y)$. Therefore the fuzzy subset f_L is a fuzzy left ideal of M.

Conversely, let $x \in M, y \in L$ and $\gamma \in \Gamma$. Since f_L is a fuzzy left ideal of M, we have $f_L(x\gamma y) \geq f_L(y)$. Since $y \in L$, we have $f_L(y) = 1$. Thus $f_L(x\gamma y) = 1$ and so $x\gamma y \in L$. Therefore L is a left ideal of M.

Corollary 1. Let (M, Γ) be a Γ -semigroup and $\emptyset \neq I \subseteq M$. Then I is an ideal of M if and only if the fuzzy subset f_I is a fuzzy ideal of M.

Proposition 4. Let (M, Γ) be a Γ -semigroup and $\emptyset \neq F \subseteq M$. Then F is a filter of M if and only if the fuzzy subset f_F is a fuzzy filter of M.

Proof. Obviously, f_F is a fuzzy subset of M. Let $x, y \in M$ and $\gamma \in \Gamma$. If $x\gamma y \notin F$, then $f_F(x\gamma y) = 0$. Since $x\gamma y \notin F$, we have $x \notin F$ or $y \notin F$. Thus $f_F(x) = 0$ or $f_F(y) = 0$, so $\min\{f_F(x), f_F(y)\} = 0$. Hence $f_F(x\gamma y) = 0 = \min\{f_F(x), f_F(y)\}$. Let $x\gamma y \in F$. Then $f_F(x\gamma y) = 1$. Since $x\gamma y \in F$, we have $x \in F$ and $y \in F$. Thus $f_F(x) = 1$ and $f_F(y) = 1$, so $\min\{f_F(x), f_F(y)\} = 1$. Hence $f_F(x\gamma y) = 1 = \min\{f_F(x), f_F(y)\}$. Therefore the fuzzy subset f_F is a fuzzy filter of M.

Conversely, let $x, y \in F$ and $\gamma \in \Gamma$. Since f_F is a fuzzy filter of M, we have $f_F(x\gamma y) = \min\{f_F(x), f_F(y)\}$. Suppose $x\gamma y \notin F$. Then $f_F(x\gamma y) = 0$, so $\min\{f_F(x), f_F(y)\} = 0$. Thus $f_F(x) = 0$ or $f_F(y) = 0$, so $x \notin F$ or $y \notin F$. It is impossible, hence $x\gamma y \in F$. Therefore F is a Γ -subsemigroup of M. Let $x, y \in M$ and $\gamma \in \Gamma$ be such that $x\gamma y \in F$. Since f_F is a fuzzy filter of M, we have $f_F(x\gamma y) = \min\{f_F(x), f_F(y)\}$. Since $x\gamma y \in F$, we have $f_F(x\gamma y) = 1$. Thus $\min\{f_F(x), f_F(y)\} = 1$ and so $f_F(x) = f_F(y) = 1$. Hence $x, y \in F$. Therefore F is a filter of M.

Proposition 5. Let (M, Γ) be a Γ -semigroup and f a fuzzy subset of M. Then f is a fuzzy filter of M if and only if the complement f' of f is a prime fuzzy ideal of M.

Proof. Let $x, y \in M$ and $\gamma \in \Gamma$. Since f is a fuzzy filter of M, we have $f(x\gamma y) = \min\{f(x), f(y)\}$. By Lemma 1, we have $f'(x\gamma y) = \max\{f'(x), f'(y)\}$. Thus $f'(x\gamma y) \ge f'(x)$ and $f'(x\gamma y) \ge f'(y)$. Hence the complement f' of f is a fuzzy ideal of M. In the above proof, we have that $f'(x\gamma y) \le \max\{f'(x), f'(y)\}$ for all $x, y \in M$ and $\gamma \in \Gamma$. Therefore the complement f' of f is a prime fuzzy ideal of M.

Conversely, let $x, y \in M$ and $\gamma \in \Gamma$. Since f' is a prime fuzzy ideal of M, we have $f'(x\gamma y) \geq f'(x), f'(x\gamma y) \geq f'(y)$, and $f'(x\gamma y) \leq \max\{f'(x), f'(y)\}$. Hence $f'(x\gamma y) = \max\{f'(x), f'(y)\}$. By Lemma 1, we have $f(x\gamma y) = \min\{f(x), f(y)\}$. Therefore f is a fuzzy filter of M.

Acknowledgment

The author would like to thank the referee for the useful comments and suggestions given in an earlier version of this paper.

References

- R. Chinram, Rough prime ideals and rough fuzzy prime ideals in gamma-semigroups, Commun. Korean Math. Soc., 24(2009), pp. 341-351.
- [2] D. R. Prince Williams, K. B. Latha and E. Chandrasekeran, Fuzzy bi-Γ-ideals in Γsemigroups, Hacet. J. Math. Stat., 38(2009), pp. 1-15.
- [3] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., **35**(1971), pp. 512-517.
- [4] N. K. Saha, On Γ-semigroup II, Bull. Calcutta Math. Soc., **79**(1987), pp. 331-335.
- [5] N. K. Saha, On Γ -semigroup III, Bull. Calcutta Math. Soc., **80**(1988), pp. 1-12.
- [6] S. K. Sardar, B. Davvaz and S. K. Majumder A study on fuzzy interior ideals of Γsemigroups, Comput. Math. Appl., 60(2010), pp. 90-94.
- [7] M. K. Sen, On Γ-semigroups, Proc. of the Int. Conf. on Algebra and it's Appl. Decker Publication, New York (1981), pp. 301.
- [8] M. K. Sen and N. K. Saha, On Γ-semigroup I, Bull. Calcutta Math. Soc., 78(1986), pp. 180-186.
- [9] M. Uçkun, M. A. Oztürk and Y. B. Jun, Intuitionistic fuzzy sets in Γ-semigroups, Bull. Korean Math. Soc., 44(2007), pp. 359-367.
- [10] L. A. Zadeh, Fuzzy sets, Inf. Cont., 8(1965), pp. 338-353.