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Abstract

In this paper, we characterize the relationship between the fuzzy ideals (fuzzy filters) and

the characteristic mappings of fuzzy ideals (fuzzy filters) in I'-semigroups.
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1 Introduction and Prerequisites

The notion of a I'-semigroup was introduced by Sen [7] in 1981 and that of fuzzy sets by
Zadeh [10] in 1965, the fuzzy set theories developed by Zadeh and others have found many
applications in the domain of mathematics and elsewhere. Rosenfeld [3] was the first who

studied fuzzy sets in the structure of groups.

As we know, ['-semigroups are a generalization of semigroups. The algebraic structures
of I'-semigroups were studied by many authors, for example, Prince Williams, Latha and
Chandrasekeran [2] studied the fuzzification of bi-I-ideals in I'-semigroups and investigate
some of their related properties. Uckun, Oztiirk and Jun [9] studied the intuitionistic fuzzifi-
cation of several types of a I'-ideal in I'-semigroups. Chinram [I] studied rough prime ideals
and rough fuzzy prime ideals in I'-semigroups. Sardar, Davvaz and Majumder [6] studied

interior ideals of I'-semigroups and investigate some of their basic properties.

In this paper, we consider a fuzzification of the concepts of a I'-subsemigroup, an ideal and
a filter in I'-semigroups and some properties of such I'-subsemigroups, ideals and filters are

investigated.
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FUZZIFICATION OF IDEALS AND FILTERS IN I'~SEMIGROUPS

Definition 1. Let M be a set. A fuzzy subset of M is an arbitrary mapping f: M — [0,1]

where [0, 1] is the unit segment of the real line.

Definition 2. Let M be a set and A C M. The characteristic mapping fa: M — [0,1]
defined via

1 ifxeA,

0 ifx & A.

By the definition of characteristic mapping, fa is a mapping of M into {0,1} C [0, 1]. Hence
fa is a fuzzy subset of M.

x> fa(x) = {

Definition 3. [7] Let M and I be any two nonempty sets. Then (M,T) is called a T'-
semigroup if there exists a mapping M x I' x M — M, written as (a,7,b) — avyb, satisfying
the following identity (aab)Bc = aa(bfBc) for all a,b,c € M and o, € T'. A nonempty
subset K of M is called a I'-subsemigroup of M if ayb € K for all a,b € K and v € T.

Definition 4. Let (M,T") be a I'-semigroup.
(i) A nonempty subset A of M is called a left ideal of M if MT'A C A.
(ii) A nonempty subset A of M is called a right ideal of M if ATM C A.

(iii) A nonempty subset A of M s called an ideal of M if it is both a left and a right ideal
of M. That is, MT'A C A and ATM C A.

Definition 5. Let (M,T") be a I'-semigroup. A T'-subsemigroup F of M is called a filter of
M if for any a,b € M and v € I';ayb € F implies a,b € F'.

Definition 6. Let (M,T") be a T'-semigroup.

(i) A fuzzy subset f of M is called a fuzzy left ideal of M if f(ayb) > f(b) for all a,b € M
and vy €T

(i) A fuzzy subset f of M is called a fuzzy right ideal of M if f(ayb) > f(a) for alla,b € M
and v €T

(i) A fuzzy subset f of M is called a fuzzy ideal of M if it is both a fuzzy left and a fuzzy
right ideal of M. That is, f(ayb) > f(b) and f(ayb) > f(a) for all a,b € M and
vyel.

Definition 7. Let (M,T") be a I'-semigroup. A fuzzy subset f of M is called a fuzzy filter of
M if f(ayb) = min{f(a), f(b)} for all a,b € M and v €T.

Definition 8. Let (M,I') be a I'-semigroup. A fuzzy subset f of M is called a fuzzy I'-
subsemigroup of M if f(ayb) > min{ f(a), f(b)} for all a,b € M and v € T.

Definition 9. Let (M,T") be a T'-semigroup and f a fuzzy subset of M. The mapping
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'+ M —[0,1] defined via f'(x) =1— f(x)
15 a fuzzy subset of M called the complement of f in S.

Definition 10. Let (M,T") be a I'-semigroup. A fuzzy subset f of M 1is called prime if
f(ayb) <max{f(a), f(b)} for alla,b € M and v €T.

2 Main Results

In this section, we give some interesting characterizations of the fuzzy ideals (fuzzy filters)

and the characteristic mappings of fuzzy ideals (fuzzy filters) in I'-semigroups.

Lemma 1. Let (M,T) be a I'-semigroup and f a fuzzy subset of M. Then the following

statements are equivalent:

(i) f(zyy) = min{f(x), f(y)} for all x,y € M and v € T.
(i) f'(xyy) = max{f'(x), f'(y)} for all x,y € M and v € T.

Proof. Assume that f(zyy) = min{f(z), f(y)} for z,y € M and v € I". Without loss of
generality, we may assume that f(xvyy) = f(x). Then f(x) < f(y),so f'(zyy) = 1—f(xvyy) =
1=f(z) = f'(z) and f'(z) = 1-f(z) = 1-f(y) = f'(y). Hence f'(zyy) = max{f'(z), f'(y)}.

Conversely, assume that f'(zyy) = max{f'(x), f'(y)} for z,y € M and v € I'. Without
loss of generality, we may assume that f'(zyy) = f/'(x). Then f'(z) > f'(y), so 1 — f(zyy) =
1= f(z) and 1 — f(z) 21— f(y). Thus f(zyy) = f(z) and f(z) < f(y). Hence f(ayy) =
min{f(z), f(y)}- O

Proposition 1. Let (M, T') be a T'-semigroup and ) # K C M. Then K is a T-subsemigroup of
M if and only if the fuzzy subset fx is a fuzzy I'-subsemigroup of M.

Proof. Obviously, fx is a fuzzy subset of M. Let z;y € M and v € I'. If x ¢ K or
y ¢ K, then fr(z) = 0 or fx(y) = 0 and so fx(zyy) > 0 = min{fx(z), fx(y)}. Let
xz,y € K. Then fr(x) = fx(y) = 1. Since zyy € KI'K C K, we have fx(zyy) = 1.
Thus fx(zyy) = 1 > 1 = min{fx(x), fx(y)}. Therefore the fuzzy subset fx is a fuzzy
['-subsemigroup of M.

Conversely, let z,y € K and v € I'. Then fx(z) = fx(y) = 1. Since fr is a fuzzy
[-subsemigroup of M, we have fx(zyy) > min{ fx(z), fx(y)} = 1. Thus fx(xyy) =1 and

so vy € K. Therefore K is a I'-subsemigroup of M. O

Proposition 2. Let (M,T) be a T'-semigroup and ) # A C M. Then A is a prime subset
of M if and only if the fuzzy subset fu is a prime fuzzy subset of M.
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Proof. Obviously, fa is a fuzzy subset of M. Let x;y € M and v € T. If zyy € A,
then fa(zyy) = 0 < max{fa(z), fa(y)}. Let ayy € A. Then fa(zyy) = 1. Since A is
a prime subset of M, we have x € A or y € A. Thus fa(x) = 1 or fa(y) = 1 and so
falzyy) = 1 < 1 = max{fa(z), fa(y)}. Therefore the fuzzy subset f4 is a prime fuzzy
subset of M.

Conversely, let z,y € M and v € T" be such that xzyy € A. Then fa(zyy) = 1. Since fa
is a prime fuzzy subset of M, we have 1 = f4(ryy) < max{fa(x), fa(y)}. Thus fa(z) =1
or fa(y) =1and soxz € Aory e A. Therefore A is a prime subset of M. O

Proposition 3. Let (M,T) be a T'-semigroup and ) # L C M. Then L is a left ideal of M
if and only if the fuzzy subset fr, is a fuzzy left ideal of M.

Proof. Obviously, fr is a fuzzy subset of M. Let z,y € M and v € I'. If y &€ L, then
frly) =0and so fr(zyy) > 0= fr(y). Let y € L. Then f1(y) = 1. Since xyy € MT'L C L,
we have fr(zvyy) = 1. Thus fr(zyy) =1 > 1 = fr(y). Therefore the fuzzy subset f; is a
fuzzy left ideal of M.

Conversely, let x € M,y € L and v € I'. Since f;, is a fuzzy left ideal of M, we have
fo(xyy) > fo(y). Since y € L, we have fr(y) = 1. Thus fr(xyy) = 1 and so xyy € L.
Therefore L is a left ideal of M. O

Corollary 1. Let (M,T') be a T'-semigroup and ) # I C M. Then I is an ideal of M if and
only if the fuzzy subset fr is a fuzzy ideal of M.

Proposition 4. Let (M,T') be a I'-semigroup and ) # F C M. Then F is a filter of M if
and only if the fuzzy subset fr is a fuzzy filter of M.

Proof. Obviously, fr is a fuzzy subset of M. Let z,y € M and v € I'. If zyy € F, then
fr(zyy) = 0. Since zyy € F, we have © € F or y ¢ F. Thus fr(x) = 0 or fr(y) = 0,
so min{ fr(z), fr(y)} = 0. Hence fr(zyy) = 0 = min{fr(x), fr(y)}. Let zyy € F. Then
fr(zyy) = 1. Since zyy € F, we have x € F and y € F. Thus fr(z) =1 and fr(y) = 1,
so min{ fr(z), fr(y)} = 1. Hence fr(zyy) = 1 = min{fr(x), fr(y)}. Therefore the fuzzy
subset fr is a fuzzy filter of M.

Conversely, let x,y € F and v € I'. Since fr is a fuzzy filter of M, we have fr(xyy) =
min{ fr (), fr(y)}. Suppose zyy & F. Then fr(zyy) = 0, so min{fr(z), fr(y)} = 0. Thus
fr(z) =0o0r fr(y) =0,s0 x & F or y &€ F. Tt is impossible, hence zyy € F. Therefore F is
a I'-subsemigroup of M. Let z,y € M and v € I" be such that zyy € F. Since fr is a fuzzy
filter of M, we have fr(xyy) = min{fr(z), fr(y)}. Since zyy € F, we have fr(zvyy) = 1.
Thus min{ fr(z), fr(y)} = 1 and so fr(z) = fr(y) = 1. Hence z,y € F. Therefore F is a
filter of M. O]

Proposition 5. Let (M,T") be a I'-semigroup and f a fuzzy subset of M. Then f is a fuzzy
filter of M if and only if the complement [’ of f is a prime fuzzy ideal of M.
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Proof. Let x,y € M and v € I'. Since f is a fuzzy filter of M, we have f(zyy) =
min{ f(z), f(y)}. By Lemmal[l] we have f'(zvy) = max{f'(z), f'(y)}. Thus f'(zyy) > f'(z)
and f'(zyy) > f'(y). Hence the complement f’ of f is a fuzzy ideal of M. In the above
proof, we have that f'(xyy) < max{f'(z), f'(y)} for all z,y € M and v € T". Therefore the
complement [’ of f is a prime fuzzy ideal of M.

Conversely, let z,y € M and v € I'. Since f’ is a prime fuzzy ideal of M, we have
fxvy) = f'(2), f(zyvy) = f(y), and f(zyy) < max{f'(z), f'(y)}. Hence f'(zyy) =
max{f'(z), f'(y)}. By Lemmal[l] we have f(zyy) = min{f(z), f(y)}. Therefore f is a fuzzy
filter of M. O
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