УДК 539.2

ПОГЛОЩЕНИЕ СВЕТА СВОБОДНЫМИ НОСИТЕЛЯМИ В ОБЛУЧЕННЫХ КРИСТАЛЛАХ *n-GaP*

Е. Ю. БРАЙЛОВСКИЙ, З. А. ДЕМИДЕНКО

Институт ядерных исследований АН УССР

Н. Е. ГРИГОРЯН, Г. Н. ЕРИЦЯН

Ереванский физический институт

(Поступила в редакцию 2 февраля 1982 г.)

Исследовано влияние электронов с энергией 50 МэВ на поглощение света свободными носителями в кристаллах n-GaP ($n_0 = 1.5 - 2 \cdot 10^{17}$ см⁻³). Показатель степени r в зависимости $\alpha \sim m^{-r}$ уменьшается от 1,8 в исходных образцах до 1,1 в облученных кристаллах (Φ =8,64 · 10¹⁵ эл/см²). Предложен и теоретически обоснован новый механизм рассеяния на «замороженных» фононах (деформации, локализованные вблизи точечных раднационных дефектов) с учетом участия подзоны X_{3c} в процессах рассеяния, качественно объясняющий экспериментальные результаты влиянием локальных деформационных полей вблизи точечных раднационных дефектов. Показано, что разупорядоченные области в n-GaP не оказывают влияния на рассеяние свободных носителей в квантовой области частот $\hbar \omega \gg k_0 T$.

Известно, что внутризонное поглощение света свободными носителями (ПСН) возможно только при наличии несовершенств кристаллической решетки, взаимодействие с которыми обеспечивает выполнение законов сохранения энергии и импульса. Поэтому исследование частотной зависимости коэффициента ПСН в квантовой области частот $\hbar \omega \gg \varepsilon$ (ε —средняя энергия электрона) при фиксированной температуре позволяет делать определенные выводы о механизмах рассеяния носителей.

Обычно коэффициент поглощения описывают зависимостью вида

$$a \sim \omega^{-r}, \tag{1}$$

где показатель степени / зависит от механизма рассеяния.

В кристаллах GaP химическая связь — смешанного типа, поэтому в рассеяние электронов наряду с ионизированными примесями дают вклад как акустические, так и оптические фононы, и, согласно результатам работ [1—4], в экспериментально наблюдаемых зависимостях значения показателя степени r должны находиться в интервале $3/2 \leq r \leq 7/2$. Для n-GaP обычно $r \simeq 1.7$, но, как показано в [5], ни один из перечисленных выше механизмов рассеяния, в том числе и на акустических фононах, не описывает ПСН в n-GaP.

В работе [6] было обосновано наличие еще одного типа рассеяния в n-GaP, связанного с особенностями его зонной структуры (так называемое *i*-рассеяние). Однако объясняя малые значения r для n-GaP, предложенный механизм не объясняет наблюдземое уменьшение r с ухудшением совершенства кристаллов, например, при увеличении степени компенсации [5]. Установление закономерностей ПСН в GaP затрудняется также тем, что в предыдущих работах исследования $\alpha = f(\omega)$ проводились на разных образцах, отличающихся содержанием как легирующих примесей, так и других дефектов.

В настоящей работе приводятся результаты экспериментального исследования ПСН на одних и тех же кристаллах *n-GaP*, концентрация дефектов и степень компенсации в которых изменялись путем введения радиационных дефектов при облучении различными дозами электронов, а также предлагается теория, объясняющая экспериментальные данные по компенсации примесями и радиационными дефектами.

Эксперимент

Измерения ПСН проводились на кристаллах GaP n-типа, легированных Te $(n_0 = (1,5-2) \cdot 10^{17} \text{ см}^{-3})$, в области длин волн 2—15 мкм при комнатной температуре на спектрофотометре UR-20. Облучение электронами с энергией 50 МэВ производилось при плотности электронного тока 1 мкА/см² также при комнатной температуре. Концентрация носителей заряда определялась по эффекту Холла и по интенсивности полосы поглощения 3 мкм, исходя из значения сечения поглощения $\sigma = 9 \cdot 10^{-17}$ с м [7] для перехода $X_{1c} - X_{3c}$.

На рис. 1 приведена спектральная зависимость коэффициента поглощения для кристалла *n-GaP*, облученного различными интегральными потоками электронов. На кривых видна полоса поглощения при 3 мкм и не-

Рис. 1. Рис. 2. Рис. 1. Спектральная зависимость коэффициента поглощения для образца № 1 *п*-GaP, облученного электронами с энергией 50 МэВ: $1 - \Phi = 0$; $2 - \Phi = 4,3 \cdot 10^{15}$ эл/см²; $3 - \Phi = 8,6 \cdot 10^{15}$ эл/см².

Рис. 2. Спектральная зависимость с для образца № 2 *п*-GaP: 1 — исходная: 2 — после облучения (Ф = 1.10¹⁷ эл/см²) и отжига при температуре 525° С в течение 20 мин. селективная зависимость коэффициента поглощения от длины волны в области 5—12 мкм, описываемая степенной функцией вида (1). В таблице приведены значения концентрации свободных электронов, степени компенсации N_A/N_D , отношения α/n при $\lambda = 6,25$ мкм и величины r в исходном кристалле и после облучения электронами. Там же приведены данные для образца, компенсированного химическими примесями, из работы [5].

Видно, что в результате облучения уменьшается концентрация свободных электронов и увеличивается степень компенсации. Одновременно наблюдается уменьшение показателя степени r в спектральной зависимости коэффициснта поглощения до значения 1,13. При этом значение отношения α/n в результате облучения возрастает. При облучении электронами с энергией 50 МэВ в кристаллах GaP образуются одновременно точечные дефекты и более термостабильные области разупорядочения [8].

На рис. 2 приведены спектры поглощения для кристаллов необлученного и после облучения электронами ($\Phi = 1 \cdot 10^{17}$ эл/см²) с последующим отжигом при температуре 525°С. Для кристалла, облученного столь высоким интегральным потоком электронов, концентрация свободных электронов резко падает, вследствие чего ПСН не наблюдается. Как показано в [8], при температуре 525°С точечные радиационные дефекты в *n-GaP* отжигаются, и поэтому различия между кривыми 1 и 2 на рис. 2 обусловлены областями разупорядочения. Данные для образца, изображенные на рис.2, приведены также в таблице.

Видно, что в то время, как в результате отжига восстановилось лишь $\sim 25\%$ концентрации свободных электронов, значение показателя степени r восстановилось до исходного. Восстановилось также значение отношения α/n .

Теория

Коэффициент ПСН [6] рассчитывался во втором порядке теории возмущений:

$$\alpha = \frac{2\pi}{h} \int \int \sum_{m} \frac{|H_{fm}^{\text{kp. H.}}|^2 |H_{mi}^{\text{por}}|^2}{(E_m - E_i)^2} f_{\mathbf{k}} (1 - f_{\mathbf{k}'}) \,\delta(E_f - E_i) \frac{2\,d\mathbf{k}}{(2\pi)^3} \,\frac{d\mathbf{k}'}{(2\pi)^3} \,, \qquad (2)$$

где *i*, *m*, *f* обозначают соответственно начальное, промежуточное и конечное состояния, $H_{fm}^{\text{кp. H.}}$ — матричный элемент взаимодействия электрона с любым кристаллическим несовершенством, $H_{mt}^{\phi_{0T}}$ — матричный элемент электрон-фотонного взаимодействия, множитель $f_k (1 - f_{k'})$ указывает на наличие электронов в начальном и конечном состояниях.

На основании [6] частотная зависимость $\alpha(\omega)$ для *n*-GaP с учетом всех традиционных механизмов рассеяния (акустическое и оптическое рассеяния, рассеяние на ионизированных примесях, междолинное рассеяние) и разных типов промежуточных состояний (как внутризонных X_{1c} , так и в вышележащей X_{3c} зоне) может быть представлена в виде

$$\alpha(\omega) = B \frac{2\beta + 1}{3\beta} \sum_{j} [A_{j}^{2}(\omega) L^{j}(\beta) + A_{jl}^{2}(\omega) L^{jl}(\beta)], \qquad (3)$$

где $A_{j}^{2}(\omega)$ и $L^{j}(\beta)$ — соответственно интенсивность и фактор анизотропии для каждого из *j*-механизмов рассеяния,

$$\beta = m_{\parallel}/m_{\perp}, \ B = \frac{4\sqrt{2m_{\parallel}}}{3 cn \hbar^2} \frac{e^2 N}{(\hbar w)^{3/2}}.$$

Второе слагаемое в (3) соответствует учету промежуточных состояний в следующей зоне проводимости (виртуальные переходы $X_{1c} - X_{3c}$), что формально выглядит как наличие еще одного дополнительного механизма рассеяния, названного нами условно *i*-рассеянием.

Интенсивности *i*-рассеяния для любого механияма рассеяния имеют вид

$$A_{jl}^{2}(\omega) = A_{j}^{2}(\omega) \eta^{l}(\omega), \qquad (4)$$

где

$$\eta^{i}(\omega) = \frac{1}{2} \frac{m_{\perp}}{m} \left(\frac{\hbar\omega}{\Delta}\right) \left(1 - \frac{\hbar\omega}{\Delta}\right)^{-2}, \tag{5}$$

m — масса свободного электрона, Δ — энергетический зазор между зонами проводимости в точке X.

Так как рассматриваемое нами ПСН происходит в частотной области $h\omega < \Delta$, то множитель $\eta^t(\omega) \sim \omega$, что понижает степень r на едчницу для любого механизма рассеяния. Отсюда следует, что степень r в n-GaP должна находиться в интервале $1/2 \leq r \leq 7/2$. Таким образом, наличие *i*-рассеяния позволяет объяснить небольшие значения r в n-GaP.

Приведенные выше экспериментальные результаты показывают, что степень r уменьшается с ростом N_A/N_D как при легировании, так и при облучении. При этом в обоих случаях растет общее количество статических несовершенств. Вокруг таких дефектов решетки могут возникать статические поля деформаций, которым будут соответствовать «замороженные» фононы. Связанный с ними дополнительный потенциал деформации в принципе ничем не отличается от потенциала деформации, обусловленного, например, акустическими фононами.

Таблица $\frac{1}{n} \cdot 10^{-17}$, cm² n, см⁻³ NAIND №№ п/п Ф, эл/см² 1,7.1017 0,1 6 1,68 1 0 4.3.1015 1,0.1017 0,4 9,2 1,34 1 8.6.1015 2,2.1016 0,87 11.5 1,13 1 7,2.1017 Данные работы [5] 0 0,6 20 1,35 1,9.1017 2 0 0,1 10 1,86 1.1017 2* 5.1016 10,8 1,86 0,7

*- после облучения проведен отжиг при температуре 525° С в течение 20 мин.

Учет рассеяния на «замороженных» фононах можно провести в самом общем виде в рамках теории деформационного потенциала. Известно, что в этом приближении для взаимодействия электрона с одним фононом с волновым вектором $\mathbf{q} = \mathbf{k}' - \mathbf{k}$ квадрат матричного элемента $|H_{\mathbf{k}'\mathbf{k}}^{\phi_{0R}}|^2$ можно записать в виде

$$|H_{\mathbf{k}'\mathbf{k}}^{\text{pos}|^2} = \frac{D_q^2 \hbar}{2\rho \, \omega_q} \times \begin{cases} n_q \\ n_q+1, \end{cases}$$
(6)

тде D_q , w_q , n_q — соответственно константа связи, частота и функция распределения фононов.

Для малых q константу связи Dq можно разложить в ряд по q:

$$D_q = (D_q)_{q=0} + \left(\frac{\partial D_q}{\partial q}\right)_{q=0} \cdot q.$$
⁽⁷⁾

Взаимодействие нулевого порядка по q электронов с фононами определяется условиями симметрии и поэтому не всегда возможно. Если $(D_q)_{q=0} \neq 0$, то по аналогии с электрон-фотонными переходами такие переходы будут «разрешенными». Для «запрещенных» переходов $(D_q)_{q=0}=0$, и электрон-фононное взаимодействие будет первого порядка по q. Нужно отметить, что такое рассеяние для всех видов фононов, кроме акустических, не вносит практически никакого вклада в кинетические явления из-за малого значения q. Однако в ПСН, где рассеяние из-за наличия фотона с энергией $\hbar \omega \gg k_0 T$ уже не является упругим и $\mathbf{q} \simeq \mathbf{k}'$, процессы с $|H_{\mathbf{k'k}}^{\oplus 0n}|^2 \sim q^2$ также надо учитывать.

Если предположить, что взаимодействие с «замороженными» фононами описывается членами первого порядка по *q*, то при росте числа таких фононов рассеяние на них может стать существенным механизмом, конкурирующим с рассеянием на акустических фононах.

Расчет α(ω) для этого механизма дает

$$\alpha_{3am}(\omega) = B \frac{2\beta + 1}{3\beta} \left[A_{3am}^2(\omega) L_{3am}^2(\beta) + (A_{3am}^2(\omega))_i L_{3am}^i(\beta) \right], \qquad (8)$$

где

$$A_{38M}^{2}(\omega) = \frac{2}{5} \frac{E_{38M}^{2} m_{\perp}}{\rho} \left(\frac{\omega}{\omega_{38M}}\right) \chi_{38M}(\omega), \qquad (9a)$$

$$\chi_{3am}(\omega) = \frac{1}{2^{2}} \left[n_{3am} \left(1 + \frac{\omega_{3am}}{\omega} \right)^{5/2} + (n_{3am} + 1) \left(1 - \frac{\omega_{3am}}{\omega} \right)^{5/2} \right], \quad (96)$$

$$L_{\rm SAM}(\beta) = \frac{2\beta^2 + 11\beta + 2}{2\beta + 1}, \qquad (9B)$$

 $E_{3am} \equiv \left(\frac{\partial D_q}{\partial q}\right)_{q=0}$ — константа связи "замороженных" фононов. Как сле-

дует из (9а), $A_{1am}^2(\omega) \sim \omega$, а $(A_{3am}^2(\omega))$, на основании (4) и (5) должна быть пропорциональна ω^2 , т. е. частотная зависимость полного коэффициента ПСН, описываемая суммой (3) и (8), должна приближенно описываться зависимостью ω^{-r} , где — $1/2 \leq r \leq 7/2$.

Нужно отметить, что в сумме такого большого числа слагаемых безусловно не все члены дают одинаковый вклад. Кроме того, *i*-рассеяние должно быть достаточно велико, так как в n-GaP переход $X_{1c} - X_{3c}$ дипольно разрешен, т. е. по терминологии двухквантовых переходов все *i*-процессы — это разрешенно-«разрешенные» или разрешенно-«запрещенные» переходы (первые слагаемые в (3) и (8) описывают запрещенно-«разрешенные» или запрещенно-«запрещенные» переходы).

Учет всех этих особенностей позволяет объяснить аномально малые значения r в частотной зависимости $\alpha(\omega)$ и тенденцию к уменьшению rпри увеличении концентрации дефектов.

Увеличение отношения α/n при облучении показывает, что в результате введения радиационных дефектов в кристаллах n-GaP появляется дополнительный механизм рассеяния. На изменение механизма рассеяния указывает также уменьшение показателя степени г при облучении. Сравнение изменения показателя / в результате введения радиационных дефектов с влиянием на г введения компенсирующих примесных атомов (см. таблицу) показывает. что радиационные дефекты гораздо эффективнее изменяют механизм примеси: рассеяния. чем напоимео. введение 7.10¹⁶ см $^{-3}$ компенсирующих радиационных дефектов ($\Phi = 4.3 \cdot 10^{15} \text{ в}_{\Lambda/\text{CM}^2}$) вызывает такое же уменьшение г, как и введение 5. 1017 см -3 компенсиотоших химических примесей. В результате дальнейшего облучения значение Г продолжает уменьшаться.

Известно, что в полупроводниковых соединениях $A^{111}B^{V}$ радиационные дефекты обладают значительной удельной деформацией, приходящейся на один точечный дефект [9], которая гораздо больше, чем удельная деформация для примесных атомов замещения. Поэтому полученный выше теоретический вывод о том, что рассеяние на «замороженных» фононах может нграть существенную роль в ПСН, позволяет с единых позиций объяснить экспериментальные результаты по влиянию легирования компенсирующими примесями и введения радиационных дефектов на спектральную зависимость коэффициента поглощения в области ПСН для кристаллов *n-GaP* дополнительным рассеянием на локальных деформациях.

В втой связи интересно отметить гораздо большее влияние на край поглощения в GaP, оказываемое радиационными дефектами по сравнению с примесными центрами, что также объясняется деформационными эффектами [10].

Результаты, приведенные на рис. 1, показывают суммарное действие точечных радиационных дефектов и областей разупорядочения на ПСН в n-GaP. Зависимости, показанные на рис. 2, позволяют отдельно выделить влияние областей разупорядочения на ПСН. Как следует из данных, приведенных на рис. 2 и в таблице, области разупорядочения эффективно уменьшают концентрацию свободных носителей, но не оказывают влияния на ход спектральной зависимости коэффициента ПСН и величину отношения α/n , а следовательно, на механизм рассеяния. Обладая высоким потенциальным барьером [11], области разупорядочения в n-GaP являются непроницаемыми для основных носителей. Поэтому рассеяние можег осуществляться только в периферийной части областей разупорядочения либо вне их.

ЛИТЕРАТУРА

- 1. Fan H. Y., Spitzer W., Collins R. Phys. Rev., 101, 566 (1956).
- 2. Rosenberg R., Lax M. Phys. Rev., 112, 843 (1958).
- 3. Meyer H. J. G. Phys. Rev., 112, 298 (1958).
- 4. Visvanthan S. Phys. Rev., 120, 376 (1960).
- 5. Ременюк А. Д. н др. ФТП, 2, 666 (1968).
- 6. Демиденко З. А., Томчук П. М. ФТП, 15, 1580 (1981).
- 7. Абагян С. А. и др. ФТП, 4, 1560 (1970).

8. Брайловский Е. Ю., Ерицян Г. Н., Тартачник В. П. ФТП, 9, 1805 (1975).

9. Ланг Д. В сб. Точечные дефекты в твердых телах. Изд. Мир, М., 1979.

10. Брайловский Е. Ю. н др. УФЖ, 26, 973 (1981).

11. Brailovski E. Yu., Grigoryan N. E., Eritsyan G. N. Phys. Stat. Sol. (a), 62, 649 (1980).

ԱԶԱՏ ՀՈՍԱՆՔԱԿԻՐՆԵՐԻ ԿՈՂՄԻՑ ԼՈՒՑՍԻ ԿԼԱՆՈՒՄԸ ՃԱՌԱԳԱՑԹՎԱԾ *n-GaP* ԲՅՈՒՐԵՂՆԵՐՈՒՄ

b. 3ni. PPUSLOUU40, 9. U. 460746540, 5. 5. 40440780.

Աշխատանքում հետաղոտված է 50 ՄէՎ էներդիայով օժտված էլեկտրոններով ճառադայβման աղդեցուβյամբ առաջացած աղատ հոսանքակիրների կլանման սպեկտրի փոփոխությունները n-GaP թյուրեղներում ($\Phi = 8,6.10^{15}$ էլ/w²) փոքրանում է 1,8-ից մինչև 1,1։ Առաչարկված է և տեսականորեն հիմնավորված կետային ռադիացիոն դեֆեկտների շուրջը լոկալիղացված դեֆորմացիաների վրա աղատ հոսանքակիրների ցրման նոր մեխանիզմ, որը հաշվի է առնում նաև X_{3c} ենքաղոտու մասնակցությունը ցրման պրոցեսին։ Այն որակապես բացատրում է փորձնական արդյունքները և կետային ռադիացիոն դեֆեկտների շուրջը առաջացած լոկալիղացված դեֆորմացիոն դաշտերի աղդեցությամբ։ Ցույց է արված, որ այդ թյուրեղներում խանդարված տիրույթները ի աշ է հ

LIGHT ABSORPTION BY FREE CARRIERS IN IRRADIATED n-GaP CRYSTALS

E. Yu. BRAJLOVSKIJ, Z. A. DEMIDENKO, N. E. GRIGORYAN, G. N. ERITSYAN

The influence of 50 MeV electrons on light absorption by free carriers in n-GaP crystals $(n_0 = (1,5 \div 2) \cdot 10^{17} \text{ cm}^{-3})$ has been studied. The power index r in the dependence $a \sim \omega^{-r}$ decreased at the irradiation from 1.8 to 1.1. A new mechanism of scattering on "frozen" phonons, i. e. the deformations locallized near the poin radiation defects, is suggested and theoretically substantiated taking into account the contribution of the subband X_{3c} to the scattering. A qualitative explanation of experimental results as due to the influence of local deformation fields near the point radiation defects is given. The disordered regions in n-GaP are shown not to affect the scattering of free carriers in the frequency region $\hbar \omega \gg k_0 T$.