УДК 535.41

УГЛОВОЕ УВЕЛИЧЕНИЕ ПОТОКОВ ЭНЕРГИИ РЕНТГЕНОВСКИХ ДИФРАКЦИОННЫХ ВОЛН В КРИСТАЛЛАХ

П. А. БЕЗИРГАНЯН, С. Е. БЕЗИРГАНЯН

Ереванский государственный университет

(Поступила в редакцию 30 января 1982 г.)

Исследованы суммарная интенсивность и потоки энергни четырех волн в кристалле в двухполевом приближении и получены общие выражения для них. Они позволяют найти распределение интенсивности и направления потоков энергии в кристалле.

Угловое увеличение потоков энергии рентгеновских дифракционных волн в кристаллах обусловлено следующим: при падении рентгеновской волны в пределах угловой области отражения рефлекса поток энергии внутри кристалла меняет свое направление от направления падения до направления отражения. Так как угол θ —порядка десяти угловых градусов, а угловая ширина отражения — порядка нескольких секунд, то угловое увеличение имеет порядок 10^4 , что очень важно для рентгенографических исследований совершенства кристаллов.

Обычно интерференцию — распределение интенсивности дифрагированных волн в кристаллах в двухполевом приближении — без вся кого на то основания исследуют отдельно для преломленных волн (K_0 и K_{02}) и для отраженных волн (K_{h1} и K_{h2}) или для волн первого поля (K_{01} и K_{h1}) и для волн второго поля (K_{02} и K_{h2}).

Было бы логичнее исследовать интерференционную картину, возникающую в кристалле вследствие одновременной суперпозиции всех воли двухполевого приближения, для одного случая поляризации. Поэтому для однозначной интерпретации эффектов динамического рассеяния рентгеновских лучей, в том числе и эффекта углового увеличения потоков энергии, необходимо рассмотреть взаимодействие всех четырех полей одной поляризации двухполевого приближения.

В работе [1] был исследован полный поток внергии четырех волн одной поляризации. Однако при выводе суммарного потока в результате усреднения в пределах элементарной ячейки выпадало неоднородное распределение интенсивности в пределах элементарной ячейки, что приводило к неоднородному распределению энергии между отражающими плоскостями.

Имея в виду следующие выражения для интенсивности и потока энергии:

$$J = |\mathbf{D}|^2 = (\mathbf{D}\mathbf{D}^*)$$

- 3 Gal

(1)

$$S = \frac{c}{8\pi} \operatorname{Re} \left(\mathbf{D} \times \mathbf{H}_{0}^{*} \right), \tag{2}$$

тде

И

$$D = D_{01} + D_{02} + D_{h1} + D_{h2}, \qquad (3)$$

H₀ — магнитная напряженность, для полной интенсивности и полного потока энергии в зависимости от угла падения и глубины проникновения излучения в кристалл получим общие выражения

$$J = \frac{1}{4} |D_0^l|^2 \{a^2 + b^2 + c^2 + d^2 + 2(ab + cd)\cos(2\pi\Delta \cdot z) + 2(ac + bd)\cos(2\pi x/d_0) + 2bc\cos[2\pi(x/d_0 - \Delta \cdot z)] + 2ad\cos[2\pi(x/d_0 + \Delta \cdot z)]\},$$
(4)

$$\mathbf{S} = \sum_{0} \mathbf{S}_{0} + \sum_{h} \mathbf{S}_{h}, \tag{5}$$

$$bc\cos\left[2\pi\left(x/d_0-\Delta\cdot z\right)\right]+ad\cos\left[2\pi\left(x/d_0+\Delta\cdot z\right)\right]\right], \qquad (6)$$

$$\Sigma_{h} = \frac{1}{4} |D_{0}^{l}|^{2} \{c^{2} + d^{2} + 2 cd \cos(2\pi\Delta \cdot z) + (ac + bd) \cos(2\pi x/d_{0}) + ad \cos[2\pi(x/d_{0} + \Delta \cdot z)] + bc \cos[2\pi(x/d_{0} - \Delta \cdot z)]\},$$
(7)

где Do - амплитуда падающей волны,

$$a = 1 - \frac{p}{(1+p^2)^{1/2}}, \ b = 1 + \frac{p}{(1+p^2)^{1/2}},$$

$$c = -\frac{1}{(1+p^2)^{1/2}}, \ d = \frac{1}{(1+p^2)^{1/2}}$$
(8)

при симметричном отражении, р — известный угловой параметр [1],

$$\Delta = 2 N K \sqrt{1 + p^2},\tag{9}$$

$$N = \frac{1}{2} |C_1| \frac{(\Phi_h \, \Phi_{\bar{h}})^{1/2}}{2 \, (\gamma_0 |\gamma_h|)^{1/2}} \,, \tag{10}$$

 $\gamma_h = \cos(\psi_B + 2\theta), \psi_B -$ угол падения, соответствующий отражению под углом Брэгга, $C_1 - \phi$ актор поляризации, $\gamma_0 = \cos \psi_B$.

При выводе (4) и (5) единичные векторы S_{01} и S_{02} были заменены их средним направлением — единичным вектором S_0 , а единичные векторы S_{h1} и S_{h2} — их средним направлением — единичным вектором S_h . При этом использовалась координатная система, ось x которой направлена вдоль нормали к отражающим плоскостям (параллельно вектору обратной решетки H), а ось z — вдоль нормали **n** к входной поверхности кристалла (во внутрь).

Определение направления общего потока энергии

Найдем выражение для угла в между направлением полного потока и биссектрисой угла 20 единичных векторов S₀ и S_h (см. рис. 1). Из этого рисунка видно, что имеет место соотношение

$$\sum_{\theta}\sin(\theta+\varepsilon) = \sum_{i}\sin(\theta-\varepsilon),$$

откуда, после некоторых преобразований, получаем

$$tg s = \frac{\sum_{0} - \sum_{h} tg \theta}{\sum_{0} + \sum_{h} tg \theta}.$$
 (11)

Угловое увеличение и определим соотношением

$$V = \frac{\varepsilon}{\eta}, \qquad (12)$$

где п — отклонение от угла падения, соответствующего брэгговскому углу отражения [3].

Рис. 1. Определение направл ения общего потока энергии

Рис. 2. Зависимость величины и направления общего потока энергии от координат х и z.

Исследуем сперва распределение суммарной интенсивности и потока внергии при $\eta = 0$, т. е. в случае, когда первичная волна падает точно под углом, соответствующим брэгговскому углу отражения. В этом случае $\eta = p = 0$ имеем a = b = d = 1, c = -1, и выражения (4) и (11) принимают следующий вид:

$$J = |\mathbf{D}_{i}^{t}|^{2} |1 - \sin(2\pi x/d_{0}) \sin(2\pi \cdot 2NK \cdot z)|, \qquad (13)$$

$$tg \,\epsilon = \frac{-\cos\left(2\pi\Delta\cdot z\right)tg\,\theta}{1-\sin\left(2\pi x/d_0\right)\sin\left(2\pi\Delta\cdot z\right)} \,. \tag{14}$$

На рис. 2 показано распределение интенсивности внутри кристалла, вычисленное на основе формулы (13). На отражающих плоскостях $x = md_0$, а также между ними ($x = (m + 1/2) d_0$) величина sin $(2\pi x/d_0)$ равна нулю. При $x = d_0/4$ и $x = (3/4) d_0$ эта величина равна соответственно +1 и -1. Величина sin $(2\pi \Delta \cdot z)$ равна нулю при значениях z = 0, $1/(2\Delta)$, $1/\Delta$, $3/(2\Delta)$. Она равна +1 при $z = 1/(4\Delta)$; $5/(4\Delta)$ и равна -1 при $z = 3/(4\Delta)$; $7/(4\Delta)$. Интенсивность принимает максимальное значение $2 |D_0^{|2}$, когда величины sin $(2\pi x/d_0)$ и sin $(2\pi \Delta \cdot z)$ имеют разные знаки, но по абсолютной величине равны единице. Это значение интенсивности обозначено на рисунке через нуль. Интенсивность принимает промежуточное значение $|D_0^{/|2}$, когда хотя бы одна из величин sin $(2\pi x/d_0)$ и sin $(2\pi \Delta \cdot z)$ равна нулю. Это значение интенсивности обозначено на рис. 2 через единицу. Исследуем теперь направление и величину потока энергии между двумя отражающими плоскостями на основе формулы (14). Рассмотрим сначала случай, когда $x = md_0$, где $m = 0, \pm 1, \pm 2, ...$ Выражение (14) принимает вид

$$tg s = -\cos\left(2\pi\Delta \cdot z\right) tg \theta \tag{15}$$

и показывает направления общего потока на атомных плоскостях в зависимости от z, причем начало координат расположено на одной из отражающих плоскостей, а выражение $x = md_0$ является уравнением плоскости, перпендикулярной к оси x. На рис. 2 стрелками показаны направления потока энергии (углы ε) на атомных плоскостях при значениях

$$z = l/(4\Delta)$$
, rge $l = 0, 1, 2, \dots, 7.$ (16)

Для этих значений z угол є принимает соответственно значения — 0, 0, 0, 0, — 0, 0, 0, 0.

Направления потоков энергии на плоскостях, для которых $x = (m + 1/2)d_0$, в точности совпадают с направлениями потока энергии на атомных плоскостях.

Представляет интерес исследовать направления потока энергин на плоскостях $x = (m + 1/2)d_0/2$, лежащих между плоскостями $x = md_0$ и $x = (m + 1/2)d_0$, расположенными на расстоянии $d_0/2$ друг от друга. Рассмотрим два случая.

а) При m = 0 имеем $x = d_o/4$, и выражение (14) принимает вид

$$tg \varepsilon = A = \frac{-\cos(2\pi\Delta \cdot z)}{1 - \sin(2\pi\Delta \cdot z)} tg \theta.$$
(17)

При значениях *z*, приведенных в выражении (16), для направлений потока энергии соответственно имеем $\varepsilon = -\theta$, $-\pi/2$, θ , 0, $-\theta$, $-\pi/2$, θ , 0.

6) При m = 1 получаем $x = 3/4 d_0$, и выражение (14) преобразуется к виду

$$A = -\frac{\cos\left(2\pi\Delta\cdot z\right)}{1+\sin\left(2\pi\Delta\cdot z\right)} \operatorname{tg}\theta, \qquad (18)$$

откуда для значений глубин, указанных в (16), соответственно получаем $\varepsilon = -\theta, 0, \theta, \pi/2, -\theta, 0, \theta, \pi/2.$

Можно сделать следующие выводы.

1. В случае, когда на кристалл падает плоская монохроматическая волна точно под углом отражения Брэгга, суммарная энергия всех четырех дифрагированных волн при двухполевом приближении на отражающих плоскостях внутри кристалла распределена однородно (с интенсивностью $D_0^{1/2}$.

2. Распределение суммарной интенсивности на плоскостях $x = (m + 1/2) d_0$, расположенных между атомными плоскостями, также однородно.

3. Распределение интенсивности на плоскостях $x = (m + 1/2) d_o/2$ неоднородно. С увеличением z интенсивность на этих плоскостях меняется периодически с периодом Δ в пределах от нуля до $2|\mathbf{D}_0^l|^2$ (см. рис. 2). При этом соответствующие значения на плоскостях $x = d_o/4$ и $x = 3/4 d_o$. сдвинуты друг относительно друга на величину. $\Delta/2$ в направлении оси z. 4. Направления потока энергии на атомных плоскостях, а также на плоскостях $x = (m + 1/2) d_0$ одинаковы, но с увеличением параметра z происходит изменение направления потока энергии на этих плоскостях в пределах от $\varepsilon = -\theta$ до $\varepsilon = +\theta$.

5. На плоскостях $x = d_0/4$ и $x = 3d_0/4$ направление потока зависит и от величины интенсивности: при $J = 2 |\mathbf{D}_0^{I|2}$ направление потока параллельно отражающим плоскостям ($\varepsilon = 0$), при $J = |\mathbf{D}_0^{I}|^2$ угол $\varepsilon = \pm \theta$, а при J = 0 угол $\varepsilon = \pm \pi/2$.

На основании результатов, полученных в настоящей работе, нами исследованы сепаратные интенсивности, потоки энергии и угловое увеличение этих потоков. Результаты этих исследований будут опубликованы.

ЛИТЕРАТУРА

- 1. Jams R. W. Sol. St. Phys., 15, 53 (1963).
- 2. Пинскер З. Г. Динамическое рассеяние рентгеновских лучей в идеальных кристаллах. Изд. Наука, М., 1974.

3. Authier A. Acta Geologia, Bratislava, 14, 11 (1968).

ՌԵՆՏԳԵՆՅԱՆ ԳԻՖՐԱԿՑԻՈՆ ԱԼԻՔՆԵՐԻ ԷՆԵՐԳԻԱՑԻ ՀՈՍՔԵՐԻ ԱՆԿՅՈՒՆԱՅԻՆ ԽՈՇՈՐԱՑՈՒՄԸ ԲՅՈՒՐԵՂՆԵՐՈՒՄ

Պ. 2. ԲԵՉԻՐԳԱՆՅԱՆ, Ս. Ե. ԲԵԶԻՐԳԱՆՅԱՆ

Ուսումնասիրված են դումար ինտենսիվությունը և չորս ալիջների էներդիաների հոսջերը բյուրեղում երկդաշտային մոտավորությամբ և ստացված են ընդհանուր արտահայտություններ դրանց համար։ Արդյունջները հնարավորություն են տալիս գտնել ինտենսիվության բաշխումը և էներդիայի հոսջերի ուղղությունները բյուրեղում։

ANGULAR MAGNIFICATION OF ENERGY FLOWS OF X-RAY DIFFRACTION WAVES IN CRYSTALS

P. A. BEZIRGANYAN, S. E. BEZIRGANYAN

The total intensity and energy flows of all the four waves of two-mode X-radiation in a crystal have been investigated and general expressions for them have been obtained. They allowed to find the intensity distribution and directions of energy flows in the crystal.