К ВОПРОСУ ПУЛЬСАЦИИ ВЛОЖЕННОГО ГАЗОВОГО СТОЛБА

С. В. АРУТЮНЯН, Р. С. ОГАНЕСЯН

В работе установлено, что регулярное акснально симметричное гравитационное поле звездного населения оказывает стабилизирующее воздействие на вложенный газовый вращающийся столб при радиальных пульсациях и дестабилизирующее — при нерадиальных. Число нулей собственных функций соответствующих радиальных смещений при этом не меняется.

Одной из возможных форм крупномасштабных газовых образований в космическом пространстве является цилиндрическая конфигурация, в формировании которой кроме сил самогравитации и вращения заметную роль играет регулярное гравитационное поле звездного населения [1].

В настоящей работе рассматривается влияние внешнего регулярного поля звездного населения на устойчивость газового цилиндра относительно малых радиальных и нерадиальных пульсаций. Равновесное состояние определяется уравнением

$$\frac{1}{p}\nabla P + \nabla (V + V_0) - \nabla \frac{\Omega^2 r^2}{2} = 0, \qquad (1)$$

которое в определенных условиях допускает равномерное распределение сжимаемой газовой массы в форме цилиндра с радиусом Го и плотностью р. Давление при этом определяется формулой

$$P = \pi G \rho^2 \alpha \left(1 - \theta^2 \right) \left(r_0^2 - r^2 \right), \tag{2}$$

где

$$\alpha = 1 + \rho_0/\rho$$
, $\theta^2 = \Omega^2/2 \pi G \rho \alpha$.

При выводе формулы (2) было учтено, что $V_0 = \pi G \rho_0 r^2$ и $V = \pi G \rho r^2$, где ρ_0 и ρ — соответственно илотности звездного населения и вложенной газовой массы. При отсутствии внешнего регулярного гравитационного поля ($\alpha = 1$) получается результат работы [2].

Используя понятие вектора смещения $\xi = (\xi_r, \xi_{\tau}, 0)$, линеаризованную систему гидродинамических уравнений с учетом адиабатического режима и уравнения Пуассона можно представить в виде

$$\frac{\rho_1}{\rho} + \frac{1}{r} \frac{d}{dr} (r\xi_r) + i \frac{m}{r} \xi_{\varphi} = 0,$$

$$\rho w^2 \xi_r + 2 i \rho w \Omega \xi_{\varphi} = \rho \frac{dV_1}{dr} + \frac{dP_1}{dr} - \frac{\rho_1}{\rho} \frac{dP}{dr},$$

$$\rho w^2 \xi_{\varphi} - 2 i \rho w \Omega \xi_r = i \frac{m}{r} (\rho V_1 + P_1),$$
(3)

469

$$P_{1} + \xi_{r} \frac{d}{dr} = \gamma P \frac{d}{\rho},$$

$$\frac{1}{r} \frac{d}{dr} \left(r \frac{dV_{1}}{dr} \right) - \frac{m^{2}}{r^{2}} V_{1} = 4 \pi G \rho_{1}.$$

К системе уравнений (3) следует добавить граничное условие [2]

$$\frac{dV_1(r_0)}{dr} + \frac{|m|}{r_0}V_1(r_0) + 4\pi G\rho\xi_r(r_0) = 0.$$
(4)

Условие, накладываемое на давление, в силу четвертого уравнения системы (3) удовлетворяется автоматически. В (3) и (4) подставлено

$$f_1(r, \varphi; \omega) = f_1(r) \exp[i(m\varphi + \omega t)], \qquad (5)$$

где индексом «1» обозначены возмущенные значения соответствующих величин.

Из системы уравнений (3) находим [2]

$$x^{2}(1-x^{2})\frac{d^{2}X}{dx^{2}} + x(1-5x^{2})\frac{dX}{dx} + 4\left[\delta^{2}x^{2} - \left(\frac{m}{2}\right)^{2}\right]X = 0.$$
 (6)

Здесь

$$X = \rho_{1}/\rho, \quad x = r/r_{0},$$

$$\delta = \frac{\beta^{2} + 2(1 - \alpha\gamma) - 2\alpha(2 - \gamma)\theta^{2}}{2\alpha\gamma(1 - \theta^{2})} + \frac{(m)^{2}}{2\alpha\gamma(1 - \theta^{2}) + 4\alpha^{1/2}\theta\beta} + \frac{(m)^{2}}{\gamma|m|\beta^{2}},$$

$$\beta^{2} = \frac{\omega^{2}}{2\pi G\rho}, \quad \varepsilon = \frac{|m|}{m}.$$
(7)

Уравнение (6) имеет регулярное решение в области [0; 1] только при определенных дискретных значениях б, удовлетворяющих условию

$$\delta^{2} - \frac{|m|}{2} \left(\frac{|m|}{2} + 2 \right) = \nu (\nu + |m| + 2), \tag{8}$$

в котором v — целое положительное число или нуль.

Собственные функции выражаются через гипергеометрические функции Якоби:

$$K(x) = C_1 x^{|m|} F(-\nu, |m| + \nu + 2, |m| + 1, x^2).$$
(9)

Таким образом,

$$\rho_1(r, \varphi; t) = C_1 \rho \left(\frac{r}{r_0}\right)^{|m|} F(-\nu, |m| + \nu + 2, |m| + 1, x^2) e^{i(\omega t + m\varphi)}.$$
(10)

Из (8) и (7) находим дисперсионное уравнение

$$\beta^{4} - 2 \Delta \beta^{2} - 2 \varepsilon^{\theta} |m| \alpha^{3/2} (1 - \theta^{2}) \beta - m^{2} x^{2} (1 - \theta^{2})^{3} = 0, \quad (11)$$

$$\Delta = \gamma \alpha (1 - 6^2) (\nu + 1) (\nu + |m| + 1) + 2\alpha 6^2 - 1.$$
 (12)

470

Рассмотрим сначала радиальные пульсации (m = 0). Из (11) имеем

$$\frac{\omega^2}{4\pi G\rho} = \gamma \alpha (1-\theta^2) (\nu+1)^2 + 2\alpha \theta^2 - 1.$$
(13)

Для фундаментальной частоты v = 0 получаем

$$\frac{\omega^2}{4\pi G \rho} = \alpha \gamma - 1 + (2 - \gamma) \alpha \delta^2,$$

откуда видно, что вложенная фигура устойчива по отношению к этим пульсациям, если

$$\gamma > \gamma_0 = \frac{1 - 2 \, \Omega^2 / 2 \, \pi G \rho}{\rho_0 / \rho + 1 - \Omega^2 / 2 \, \pi G \rho} \,. \tag{14}$$

Таким образом, звездное население, как и вращение, оказывает стабилизирующее воздействие, увеличивая область устойчивых у.

Прежде чем приступить к анализу нерадиальных пульсаций вложенной фигуры отметим, что кроме оказания стабилизирующего воздействия вращение меняет также природу нестабильных мод [2]: возникают нестабильные вибрационные моды, т. е. у частот нестабильных «g»-мод появляются реальные части. Из-за силы Кориолиса снимается также вырождение спектра частот нерадиальных пульсаций.

Вычисления нерадиальных пульсаций вложенного газового столба при m = 2 для v = 0 и v = 1 проведены на ЭВМ Наири-3. Результаты для значений параметра $\alpha = 1, 2, 5, 10$ приведены в виде графиков (рис. 1, 2, 3) и таблиц 1, 2.

Анализ показывает, что и в присутствии звездного населения имеется четкое разделение спектра частот на две части: «g»- и «p»-моды. «p»-моды устойчивы при любом значении параметра α. Что касается «g»-мод, то с увеличением а они становятся более неустойчивыми при фиксированном вращении; характерное время их неустойчивости $1/|Im\beta|$ уменьшается. Это видно из рис. 1. Зависимость Im β от θ^2 для разных α приведена на рис. 2 и 3. Из рисунков следует, что существует предельное вращение θ_{co}

которое полностью стабилизирует систему. При этом чем больше α , тем θ_c^2 ближе к наибольшему значению параметра вращения в условиях относительного равновесия газового цилиндра ($\theta^2 = 1$). Значения θ_c^2 приведены в табл. 1 и 2.

С помощью (3) и (7) получаем следующее дифференциальное уравнение для радиального смещения §,:

$$\frac{1}{z}\frac{d}{dx}\left(x\frac{dY}{dx}\right) - \frac{m^2}{x^2}Y + x\frac{dX}{dx} + \left[2 + 2\varepsilon \left|m'_{x}z^{1/2}\theta\beta^{-1} + m^{2}\alpha\left(1 - \theta^{2}\right)\beta^{-2}\right]X = 0,$$
(15)

где $Y = x\xi_r/r_0$.

Граничное условие (4), выраженное через X(x) и Y(x), имеет вид

$$[\beta^{2} - 2 \alpha^{1/2} \epsilon \theta \beta - \alpha |m| (1 - \theta^{2})] [Y'(1) + X(1) + + |m| Y(1)] + |m| \gamma \alpha (1 - \theta^{2}) X(1) + 2|m| Y(1) = 0.$$
(16)

Уравнения (15) и (16) дают возможность вычислить радиальные собственные функции. Результаты вычислений для случаев $\theta^2 = 0$, $\Omega^2/2\pi G\rho = 0.5$ и $\theta^2 = 0.5$ при $\alpha = 2, 5, 10$ показали, что при данном у число нулей радиальных собственных функций и при устойчивых «*P*»-модах, и

i aprilenni og upa pastat a dan v = 0										
ν = 0	$\theta^2 = 0$	$\theta^2 = 0.25$	$\theta^2 = 0.5$	$\theta^2 = 0,75$	$\frac{\Omega^2}{2\pi G\rho} = 0,25$	$\frac{\Omega^2}{2\pi G\rho}=0.5$	$\frac{\Omega^2}{2\pi G\rho} = 0.75$	0° .		
α = 1	2,9107 -2,9107 ±0,6871	$\begin{array}{c} 2,8030 \\ -2,3739 \\ -0,2145 \pm \\ \pm 0,5405 \ i \end{array}$	2,5074 -1,9529 -0,2772± ±0,3569 <i>i</i>	2,0939 -1,5829 -0,2555± ±0,1008 t	-	-		0,795		
a = 2	4,3415 -4,3415 ±0,9213	4,1880 -3,6540 -0,2670± ±0,7189 <i>t</i>	3,7930 -3,1397 -0,3267± ±0,4787 <i>i</i>	3,2556 -2,7068 -0,2744 <u>+</u> ±0,19541	$\begin{vmatrix} 4,3323 \\ -3,9386 \\ -0,1968 \pm \\ \pm 0,8241 i \end{vmatrix}$	-	$\begin{array}{c c} & 4.0064 \\ & -3,3895 \\ & -0,3084 \pm \\ & \pm 0,6042 i \end{array}$	0,900		
a = 5	7,0711 -7,0711 ±1,4142	$ \begin{array}{c c} 6 & 8278 \\ \hline6,0406 \\ -0.3936 \\ \pm 1,0995 t \end{array} $	6,2231 -5,2829 -0,4701± ±0,7345 <i>i</i>	5,4122 -4,6502 -0.3810± ±0,3213 <i>i</i>	7,1368 6,7576 0,1896± ±1,3548 <i>i</i>	7,0856 -6,5576 -0,2640± ±1,2937 <i>i</i>	$\begin{array}{c c} 7,0120 \\ -6.3765 \\ -0,3178 \pm \\ \pm 1,2308 i \end{array}$	0,960		
α = 10	10,0958 -10,0958 ± 1,9810	9,7516 -8,6630 -0,5443± ±1,5385 i	8,9053 -7,6143 -0,6455± ±1,02861	7,7755 6,7397 0,5179 <u>+</u> ±0,4570 <i>i</i>	10,1971 9,8220 0,1876± ±1,9394 <i>i</i>	10,1860 -9,6595 -0,2633± ±1,8973 i	$ \begin{array}{c} 10,1553 \\ -9,5155 \\ -0,3199 \\ \pm 1,8546 \\ \end{array} $	0,975		

Значения собственных частот β нерадиальных пульсаций газового столба и предельных вращений θ² при разных з для у = 0

473

-

	A ALLE	and the second s						We will and
v = 1	$\theta^2 = 0$	b² = 0,25	θ² = 0,5	0 ² = 0,75	$\frac{\Omega^2}{2\piG\rho}=0.25$	$\frac{\Omega^2}{2\pi G\rho} = 0.5$	$\frac{\Omega^3}{2\pi G\rho} = 0.75$	0°c
a = 1	4,9827 -4,9827 ±0,4014	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 2,8806 \\ -2,6551 \\ -0,1127 \pm \\ \pm 0,1413 i \end{array}$	-	-	-	0,925
a = 2	7,1863 -7,1863 ±0,5566	6,4446 6,2346 0,1050 <u>+</u> ±0,4615 <i>1</i>	$5,5003-5,2232-0,1386\pm 0,3466 t$	4,3041 -4,0221 -0,1410 <u>+</u> ±0,1946 <i>i</i>	$\begin{vmatrix} 6,8519 \\ -6,7004 \\ -0,0758 \pm \\ \pm 0,5110 t \end{vmatrix}$	-	5,9956 -5,7459 -0,1250± ±0,4072 <i>i</i>	0,965
α 5	$ \begin{array}{c c} 11,4931 \\ -11,4931 \\ \pm 0,8701 \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{r} $	7,0157 6,5987 0,2085± ±0,3025 <i>i</i>	$ \begin{array}{c c} 11,3159 \\ -11,1664 \\ -0,0748 \pm \\ \pm 0,8418 i \end{array} $	$ \begin{array}{c} 11,0895 \\ -10,8786 \\ - 0,1049 \\ \pm 0,8127 \\ \end{array} $		0,985
α = 10	16.3147 -16,3147 ± 1,2259	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{r} 12,6117 \\ -12,0244 \\ -0,2936 \\ \pm 0,7571 i \end{array} $	$ \begin{array}{r} 10,0191 \\ -9,4417 \\ -0,2887 \pm \\ \pm 0,4254 i \end{array} $	$ \begin{array}{r} 16,2127 \\ -16,0638 \\ - 0,0745 \pm \\ \pm 1,2060 t \end{array} $	$ \begin{array}{r} 16,0648 \\ -15,8550 \\ - 0,1049 \pm \\ \pm 1,1859 t \end{array} $	$ \begin{array}{r} 15,9075 \\ -15,6515 \\ - 0,1280 \pm \\ \pm 1,1654 t \end{array} $	0,995

Значения собственных частот β нерадиальных пульсаций газового столба и предельных вращений θ²_c при разных α для у = 1

Таблица 2

474

1

при неустойчивых «g»-модах остается таким же, каким оно было в отсутствие регулярного гравитационного поля.

Ереванский государственный университет

Поступила 2. VI. 1981

ЛИТЕРАТУРА

1. С. В. Арутюнян, Р. С. Оганесян. Ученые записки ЕГУ, 2, 59 (1980). 2. М. Cretin, J. L. Tassoul. Ann. Astr., 28, 982 (1965).

ՆԵՐԳՐՎԱԾ ԳԱԶԱՑԻՆ ՍՅԱՆ ՏԱՏԱՆՈՒՄՆԵՐԻ ՎԵՐԱԲԵՐՅԱԼ

U. 4. 2UPAPPSAPISUL, A. U. 2042ULLPUSUL

Աշխատանթում ցույց է տրված, որ առանցքային համաչափությամբ օժտված աստղային համակարդի ռեգուլյար գրավիտացիոն դաշտը ներդրված, պտտվող գազային սյանը կայունացնում է ռադիալ և անկայունացնում՝ ոչ ռադիալ տատանումների նկատմամբ։ Համապատասխան ռադիալ շեղումների սեփական ֆունկցիաների գրոների քանակը մեում է անփոփոխ։

ON PULSATIONS OF AN INTERLOCATED GASEOUS COLUMN

S. V. HARUTYUNYAN, R. S. OGANESSYAN

It is established that the axial gravitational field of a stellar population has a stabilizing effect on radial pulsations of an interlocated rotating gaseous column and a destabilizing one on its nonradial pulsations, the number of zeroes of respective eigenfunctions of radial displacements being unchanged.