ДИНАМИЧЕСКИЕ МАКСИМУМЫ РЕНТГЕНОВСКОГО ПЕРЕХОДНОГО ИЗЛУЧЕНИЯ, ОБРАЗУЕМОГО В СТОПКЕ КРИСТАЛЛИЧЕСКИХ ПЛАСТИН

Г. М. ГАРИБЯН, ЯН ШИ

При прохождении быстрой заряженной частицы через кристалл в результате дифракции поля заряда на кристаллической решетке и динамического взаимодействия воли возникают узкие и высокие максимумы излучения. При пролете частицы через стопку регулярно расположенных кристаллических пластии происходит дальнейшая интерференция воли, возникающих в разных пластинах. Найдены условия, при которых динамические максимумы усиливаются.

Ранее было показано [1], что в спектре рентгеновского переходного излучения, образуемого в достаточно толстом монокристалле, вблизи частот Брэгга появляются высокие и узкие максимумы, названные динамическими. Эти максимумы узки, поэтому несмотря на свои большие значения после интегрирования по углам и частотам они дают сравнительно небольшое число квантов. Естественно встает вопрос о том, чтобы попытаться увеличить это число квантов путем создания стопки кристаллических пластин и использования эффектов интерференции. В настоящей работе решается такая задача и проводится соответствующий анализ полученных формул. Показано, что динамические максимумы в стопке возрастают по спектральной интенсивности, но ширины этих максимумов уменьшаются.

1. Рассмотрим рентгеновское переходное излучение, образуемое при пролете ультрарелятивистской заряженной частицы через стопку регулярно расположенных N одинаковых кристаллических пластин. Будем считать, что число N такое, что имеет место неравенство

$$|Nr_1|^2 \ll 1, \tag{1}$$

где $r_1 \approx \omega_0^2/4 \omega^2$ — коэффициент отражения рентгеновского излучения от границы пластины. Из-за малости величины r_1 вышеуказанное неравенство справедливо вплоть до N порядка 10⁴. При выполнении этого условия излучение, небрагговски отраженное от границ пластин, является слабым, и мы будем им пренебрегать.

Следуя [1], мы будем считать, что помимо поля заряда E^{sap} в кристаллических пластинах имеются поля E^{pac} и E^{cs} , а в вакуумных отсеках имеется поле $E^{вак}$. Фурье-компоненты этих полей имеют вид

$$\mathbf{E}^{\mathrm{pac}}(\mathbf{k}) = (\mathbf{E}^{\mathrm{pac}}_{n} \mathbf{e}_{n} + E^{\mathrm{pac}}_{p} \mathbf{e}_{p}) \,\delta\left(k_{z} - \frac{\omega}{\upsilon}\right),$$
$$\mathbf{E}^{\mathrm{pac}}(\mathbf{k}_{h}) = (E^{\mathrm{pac}}_{nn} \mathbf{e}_{n} + E^{\mathrm{pac}}_{np} \mathbf{e}_{p}) \,\delta\left(k_{z} - \frac{\omega}{\upsilon}\right),$$

$$\begin{split} \mathbf{E}_{(m)}^{cs}(\mathbf{k}) &= [E_{n1}^{cs}(m)\,\delta\,(k_{z}-\lambda_{n1}) + E_{n2}^{cs}(m)\,\delta\,(k_{z}-\lambda_{n2})]\,\mathbf{e}_{n} + \\ &+ [E_{p1}^{cs}(m)\,\delta\,(k_{z}-\lambda_{p1}) + E_{p2}^{cs}(m)\,\delta\,(k_{z}-\lambda_{p2})]\,\mathbf{e}_{p}, \\ \mathbf{E}_{(m)}^{cs}(\mathbf{k}_{h}) &= [E_{n1}^{cs}(m)\,\delta\,(k_{hz}-K_{hx}-\lambda_{n1}) + E_{n2}^{cs}(m)\,\times \\ &\times\,\delta\,(k_{hz}-K_{hz}-\lambda_{n2})]\,\frac{(\gamma_{0}-g_{0})}{g_{h}}\,\mathbf{e}_{n} + \\ &+ [E_{p1}^{cs}(m)\,\delta\,(k_{hz}-K_{hz}-\lambda_{p1}) + E_{p2}^{cs}(m)\,\times \\ &\times\,\delta\,(k_{hx}-K_{hz}-\lambda_{p2})]\,\frac{(\gamma_{0}-g_{0})}{\zeta g_{h}}\,\mathbf{e}_{hp}, \end{split}$$
(2)
$$&\times\,\delta\,(k_{hx}-K_{hz}-\lambda_{p2})]\,\frac{(\gamma_{0}-g_{0})}{\zeta g_{h}}\,\mathbf{e}_{hp}, \\ \mathbf{E}_{(m)}^{ssx}(\mathbf{k}) &= (E_{n}^{ssx}(m)\,\mathbf{e}_{n} + E_{p}^{ssx}(m)\,\mathbf{e}_{p})\,\delta\,(k_{z}-\lambda_{0}), \\ \mathbf{E}_{(m)}^{ssx}(\mathbf{k}_{h}) &= (E_{hn}^{ssx}(m)\,\mathbf{e}_{n} + E_{hp}^{ssx}(m)\,\mathbf{e}_{hp})\,\delta\,(k_{hz}\mp\lambda_{n}), \end{split}$$

где индекс *m* означает номер вакуумного отсека или кристаллической пластины соответственно для $E_{(m)}^{\text{вак}}$ и $E_{(m)}^{\text{св}}$, индексы *n* и *p* означают нормальную и параллельную поляризации, e_n , e_p , e_{hp} — соответствующие им единичные векторы,

$$\lambda_0 = (\omega/c) \left(1 - k_{\perp}^2 c^2 / \omega^2\right)^{1/2}, \ \lambda_h = (\omega/c) \left(1 - k_{h\perp}^2 c^2 / \omega^2\right)^{1/2}, \\ \lambda_{aj} = \lambda_0 \left(1 - \Delta_{aj}\right) \ (a = n, \ p, \ j = 1, \ 2).$$

Знаки \mp в аргументе б-функции в выражении $E_{(m)}^{\text{вак}}(k_{h})$ соответствуют случаям Лаув и Брвгга. Кроме того, использованы обозначения

$$E_{n}^{\text{pac}} = \frac{8 \pi^{2} e i \upsilon [\mathbf{k}\mathbf{k}_{h}]}{\upsilon^{\omega} [\mathbf{k}\mathbf{k}_{h}]|} \cdot \frac{g_{0} (\bar{\nu} + \eta_{0} \zeta - g_{0}) + |g_{h}|^{2}}{\eta_{0} D_{n}},$$

$$E_{hn}^{\text{pac}} = \frac{8 \pi^{2} e i \upsilon [\mathbf{k}\mathbf{k}_{h}]}{\upsilon^{\omega} [[\mathbf{k}\mathbf{k}_{h}]]} \cdot \frac{g_{h}}{D_{n}},$$
(3)

$$E_{p}^{\text{prc}} = \frac{g_{0}\zeta[q_{0}(\bar{\nu} + \eta_{0}\zeta - g_{0}) + |g_{h}|^{2}] - q_{h}[g_{0}(\bar{\nu} + \eta_{0}\zeta - g_{0}) + \zeta^{2}|g_{h}|^{2}]}{|\zeta_{k} - k_{h}|D_{p}},$$

$$E_{hp}^{\text{pac}} = \frac{g_{h}|q_{0}[\eta_{0} - g_{0}(1 - \zeta^{2})] - \zeta\eta_{0}q_{h}|}{|k - \zeta_{k}|D_{p}},$$

$$\Delta_{nj} = \frac{\bar{\nu} - g_{0}\zeta - g_{0} \pm [(g_{0}\zeta - g_{0} + \bar{\nu})^{2} + 4|g_{h}|^{2}\zeta]^{1/2}}{4\zeta},$$

$$(4)$$

$$\bar{\nu} = (2\nu - \vartheta^{2})(\zeta - 1) + 2\vartheta \sqrt{1 - \zeta^{2}}\cos\varphi, \quad \nu = (\omega - \omega_{B})/\omega_{B},$$

$$\zeta = \cos 2\vartheta_{B} = \frac{K_{h}^{2} - 2K_{hz}^{2}}{K_{h}^{2}}, \quad \omega_{B'} = \frac{cK_{h}^{2}}{2|K_{hz}|},$$

$$\eta_{0} = 1 - \beta^{2} + \vartheta^{2}, \quad \vartheta = k_{\perp}c/|\omega|,$$

$$q_{0} = -\frac{8\pi^{2}ei}{\upsilon}, \quad q_{h} = q_{0}\left[1 + \frac{K_{hz}(1 - \beta^{2})\omega/\upsilon + k_{\perp}K_{\perp h}}{k_{\perp} + \omega^{2}/\upsilon^{2} - \omega^{2}/c^{2}}\right],$$

$$D_{n} = (\eta_{0} - g_{0})(\bar{\nu} + \eta_{0}\zeta - g_{0}) - |g_{h}|^{2}.$$

$$(5)$$

Величины Δ_{p_j} и D_p получаются соответственно из Δ_{n_j} и D_n (формулы (4) и (5)) заменой $|g_h|^2$ на $\zeta^2 |g_h|^2$, $K_h/2\pi$ — вектор обратной решетки кристалла, $k_h = \mathbf{k} + K_h$, g_0 , g_h — параметры, характеризующие рассеивающую способность кристалла.

В выражениях (1) величины $E_{\alpha}^{\text{вак}}(m)$, $E_{A\alpha}^{\text{св}}(m)$ и $E_{\alpha}^{\text{св}}(m)$ — пока еще неопределенные амплитуды полей, которые следует найти из граничных условий.

2. Запишем, например, условия непрерывности для нормальной поляризации ($\alpha = n$) на границе раздела *q*-го вакуумного отсека с (q + 1)-ой пластиной ($z = z_q = q (\alpha + b)$):

$$E_{n}^{\text{Bak}}(q) \exp(i\lambda_{0}z_{q}) = E_{n}^{\text{pac}} \exp\left(i\frac{\omega z_{q}}{\upsilon}\right) + E_{n1}^{\text{cs}}(q+1) \times \\ \times \exp\left(i\lambda_{n1}z_{q}\right) + E_{n2}^{\text{cs}}(q+1) \exp\left(i\lambda_{n2}z_{q}\right),$$

$$E_{hn}^{\text{pak}}(q) \exp\left(-i(K_{hz} \mp \lambda_{h})z_{q}\right) = E_{hn}^{\text{pac}} \exp\left(i\frac{\omega z_{q}}{\upsilon}\right) -$$
(7)

in the

$$d_{nj} = \frac{2\Delta_{nj} + g_0}{g_h} \,. \tag{8}$$

Знаки \mp в формуле (7) соответствуют случаям Лауэ и Брэгга, при том срответственно имеем $\lambda_h = \lambda_0 + K_{hz}$ и $\lambda_h = -\lambda_0 - K_{hz}$. Так что в обоих случаях экспоненциальный множитель в левой части формулы (7) имеет вид ехр ($i\lambda_0 z_q$).

 $-d_{n1} E_{n1}^{cs}_{(q+1)} \exp(i\lambda_{n1} z_q) - d_{n2} E_{n2}^{cs}_{(q+1)} \exp(i\lambda_{n2} z_q),$

Аналогичным образом условия непрерывности на границе разде ла (q+1)-ой пластины с (q+1)-ым вакуумным отсеком $(z = z_q + a)$ имеют вид

$$E_{n}^{\text{pac}} \exp\left(i\frac{\omega}{v}(z_{q}+a)\right) + E_{n1}^{\text{cs}}(q+1)\exp\left(i\lambda_{n1}(z_{q}+a)\right) + E_{n2}^{\text{cs}}(q+1)\exp\left(i\lambda_{n2}(z_{q}+a)\right) = E_{n(q+1)}^{\text{sak}}\exp\left(i\lambda_{0}(z_{q}+a)\right),$$

$$E_{nn}^{\text{pac}}\exp\left(i\frac{\omega}{v}(z_{q}+a)\right) - d_{n1}E_{n1}^{\text{cs}}(q+1)\exp\left(i\lambda_{n1}(z_{q}+a)\right) - (10)$$

$$-d_{n2} E_{n2(q+1)}^{cB} \exp(i\lambda_{n2}(z_q+a)) = E_{hn(q+1)}^{BBX} \exp(i\lambda_0(z_q+a))$$

как для случая Лауэ, так и для случая Брэгга.

Условия непрерывности для параллельной поляризации ($\alpha = p$) записываются в точности так же с заменой индекса *n* на *p* в уравнениях (6). (7), (9) и (10). При этом

$$d_{pj} = \frac{2\Delta_{pj} + g_0}{g_h \zeta} \,. \tag{11}$$

В дальнейшем для простоты записи индексы п и р будем опускать.

Используя (6), (7), (9) и (10), выразим $E_{(q+1)}^{\text{вак}}$ и $E_{h(q+1)}^{\text{вак}}$ через $E_{(q)}^{\text{вак}}$ и $E_{h(q)}^{\text{вак}}$. Для этого достаточно выразить, например, из (6) и (7) величины $E_{1(q+1)}^{\text{св}}$ и $E_{2(q+1)}^{\text{св}}$ через $E_{(q)}^{\text{вак}}$, $E_{h(q)}^{\text{вак}}$ и подставить их в (9) и (10). Результат удобно записать в матричной форме

$$\hat{E}(q+1) = \hat{S}\hat{E}(q) - \exp\left[i\left(\frac{\omega}{c} - \lambda_0\right)z_q\right]\hat{R}\hat{E}_{pac}, \quad (12)$$

где

$$\hat{E}(q) = \begin{pmatrix} E_{(q)}^{\text{max}} \\ E_{h(q)}^{\text{max}} \end{pmatrix}, \quad \hat{E}_{\text{pac}} = \begin{pmatrix} E^{\text{pac}} \\ E_{h}^{\text{pac}} \end{pmatrix}, \quad (13)$$

$$\hat{S} \equiv \begin{pmatrix} d_{9}e^{i\lambda_{1}a} - d_{1}e^{i\lambda_{9}a} & e^{i\lambda_{1}a} - e^{i\lambda_{9}a} \\ -d_{1}d_{2}[e^{i\lambda_{1}a} - e^{i\lambda_{9}a}] & d_{2}e^{i\lambda_{9}a} - d_{1}e^{i\lambda_{1}a} \end{pmatrix} \frac{\exp(-i\lambda_{0}a)}{[d_{3} - d_{1}]}, \quad (14)$$

$$\widehat{R} \equiv \widehat{S} - \exp\left[i\left(\frac{\omega}{\sigma} - \lambda_{s}\right)a\right] \cdot \widehat{I}, \qquad (15)$$

I-единичная матрица.

3. Введем новые величины

$$\hat{F}(q+1) = \hat{E}(q+1) + \exp\left[i\left(\frac{\omega}{\upsilon} - \lambda_{0}\right)z_{q}\right] \cdot \hat{A}$$
(16)

и подберем А таким образом, чтобы имело место соотношение (см. [2])

$$\hat{F}(q+1) = \hat{S}\hat{F}(q) \tag{17}$$

для произвольного q. Подставим в (17) формулы (16) и воспользуемся (12). В результате для определения величины A получим уравнение

$$-\hat{R}\hat{E}_{pac} + \hat{A} = \exp\left[-i\left(\frac{\omega}{\upsilon} - \lambda_0\right)(a+b)\right]\hat{S}\hat{A},$$

откуда

$$\hat{A} = \hat{Q}^{-1} \, \hat{R} \hat{E}_{\text{pac}},\tag{18}$$

TAC

$$\widetilde{Q} = \widetilde{I} - \exp\left[-i\left(\frac{\omega}{\upsilon} - \lambda_0\right)(a+b)\right] \widehat{S}.$$
 (19)

Последовательно применяя соотношение (17), получим

$$\widehat{F}(N) = \widehat{S}^{N-1} \cdot \widehat{F}(1).$$

Теперь воспользуемся (16) и (12) и найдем связь между E(N) и E (0):

$$\hat{E}(N) = \hat{S}^{N} \hat{E}(0) - \hat{S}^{N-1} \hat{R} \hat{E}_{pac} + \left(\hat{S}^{N-1} - \exp\left[i\left(\frac{\omega}{\upsilon} - \lambda_{0}\right)z_{N-1}\right]\hat{I}\right)\hat{A}.$$

442

1.47

Исключая из последней формулы A с помощью (18), окончательно получаем

$$\widehat{E}(N) = \widehat{S}^{N} \widehat{E}(0) + \widehat{P} \widehat{E}_{pac}, \qquad (20)$$

где

$$\widehat{P} = \left\{ \left\{ \widehat{S}^{N-1} - \exp\left[i \left(\frac{\omega}{\upsilon} - \lambda_0 \right) z_{N-1} \right] \widehat{I} \right\} \widehat{Q}^{-1} - \widehat{S}^{N-1} \right\} \widehat{R}.$$
(21)

В случае Лауэ имеем

$$\widehat{E}(N) = \begin{pmatrix} E_{(N)}^{\text{BBK}} \\ E_{h(N)}^{\text{BBK}} \end{pmatrix}, \ \widehat{E}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$
(22)

а в случае Брэгга

$$\hat{E}(N) = \begin{pmatrix} E_{(N)} \\ 0 \end{pmatrix}, \quad \hat{E}(0) = \begin{pmatrix} 0 \\ E_{h(0)}^{\text{BBK}} \end{pmatrix}. \quad (23)$$

Поэтому матричное уравнение (20) фактически представляет собой систему двух линейных неоднородных алгебраических уравнений с двумя неизвестными. Решение этих уравнений можно записать в явном виде. В случае Лауэ оно есть

$$E_{(N)}^{\text{max}} = P_{11} E^{\text{pac}} + P_{12} E_{h}^{\text{pac}},$$

$$E_{h(N)}^{\text{max}} = P_{21} E^{\text{pac}} + P_{22} E_{h}^{\text{pac}},$$
(24)

в случае Брэгга-

$$E_{(N)}^{\text{Bak}} = P_{11}E^{\text{pac}} + P_{13}E_{h}^{\text{pac}} - \frac{S_{12}^{N}}{S_{22}^{N}}(P_{21}E^{\text{pac}} + P_{22}E_{h}^{\text{pac}}),$$

$$E_{h(0)}^{\text{Bak}} = -\frac{P_{21}E^{\text{pac}} + P_{22}E_{h}^{\text{pac}}}{S_{22}^{N}}.$$
(25)

Величины P_{ij} — элементы матрицы (21).

 $S_{22}^{N} = \psi_N p_N$

Матричные элементы S_{ij} можно вычислить с помощью теоремы о степенях унимодулярной матрицы (см., напр., [3]):

$$S_{11}^{N} = P_{N} \psi_{N},$$

$$S_{12}^{N} = \frac{i\xi g_{h} \sin (Nx) \psi_{N}}{\Delta_{2} - \Delta_{1}},$$

$$S_{21}^{N} = -\frac{i (2 \Delta_{1} + g_{0}) (2 \Delta_{2} + g_{0}) \psi_{N} \sin(Nx)}{\xi g_{h} (\Delta_{2} - \Delta_{1})},$$
(26)

$$\psi_N = \exp\left[\frac{-i\frac{N(\Delta_1 + \Delta_2)\lambda_0 a}{2}}{2}\right],$$
$$x = \frac{(\Delta_2 - \Delta_1)\lambda_0 a}{2},$$

$$p_{N} = \cos Nx + i \frac{\Delta_{1} - \Delta_{2} + g_{0}}{\Delta_{2} - \Delta_{1}} \sin Nx, \qquad (27)$$
$$p_{N} = \cos Nx - i \frac{\Delta_{1} + \Delta_{2} + g_{0}}{\Delta_{2} - \Delta_{1}} \sin Nx$$

и $\xi = 1$ или ζ в зависимости от типа поляризации (*n* или *p*).

С помощью (21), (19), (15) и (26) после простых, но довольно громовдких вычислений можно получить явный вид матричных элементов P_{ij} :

$$P_{11} = \frac{\psi_N \exp\left(-i\varphi\right)}{\det Q} \left[p_{N+1} - p_N \left[\exp\left(-i\varphi\right) + \exp\left(i\left(\varphi - \varphi_0\right)\right) \right] + p_{N-1} \exp\left(-i\varphi_0\right) - p_1 \exp\left(iN\varphi\right) - \bar{p_1} \exp\left(i\left(N\varphi - \varphi_0\right)\right) + (28) + \exp\left(iN\varphi\right) \left[\exp\left(i\left(\varphi - \varphi_0\right)\right) + \exp\left(-i\varphi\right) \right] \right],$$

$$P_{13} = \frac{i\xi g_h \psi_N \exp\left(-i\varphi\right)}{(\Delta_3 - \Delta_1) \det Q} \left| \sin\left(N+1\right) x - \sin Nx \left[\exp\left(-i\varphi\right) + \exp\left(i(\varphi - \varphi_0)\right)\right] + \right|$$
(29)

$$+ \exp(-i\varphi_{0}) \sin(N-1) x - \sin x[1-\exp(-i\varphi_{0})] \exp(iN\varphi)], P_{31} = -\frac{i(2\Delta_{1} + g_{0})(2\Delta_{2} + g_{0})\psi_{N}}{\xi g_{h}(\Delta_{2} - \Delta_{1}) \det Q} \exp(-i\varphi) \{\sin(N+1)x - - \sin Nx [\exp(-i\varphi) + \exp(i(\varphi - \varphi_{0}))] + \exp(-i\varphi_{0}) \times (30) \\ \times \sin(N-1)x - \sin x \cdot \exp(iN\varphi) [1 - \exp(-i\varphi_{0})], P_{32} = \frac{\psi_{N} \exp(-i\varphi)}{\det Q} \{\bar{p}_{N+1} - \bar{p}_{N} [\exp(-i\varphi) + \exp(i(\varphi - \varphi_{0}))] + \\ + \bar{p}_{N-1} \exp(-i\varphi_{0}) - \bar{p}_{1} \exp(iN\varphi) - p_{1} \exp(i(N\varphi - \varphi_{0})) + (31)$$

+ exp $(iN\varphi)$ [exp $(-i\varphi)$ + exp $(i(\varphi-\varphi_0))$]],

где

$$\varphi = \left(\frac{\omega}{\upsilon} - \lambda_0\right)(a+b) + \frac{(\Delta_1 + \Delta_2)\lambda_0 a}{2},$$

$$\varphi_0 = \left(\frac{\omega}{\upsilon} - \lambda_0\right)b,$$
(32)

$$et Q = 2 \exp\left(-i\varphi\right)(\cos\varphi - \cos x).$$

В частном случае одной кристаллической пластины (N = 1) из формул (24) и (25) с учетом (26)—(32) непосредственно получаем формулы (18) и (26) работы [1]. Для произвольного числа N, удовлетворяющего условию (1), но вдали от бръгговских частот, когда $|\overline{v}| \gg |g_0|$, $|g_h|$, получаем известную формулу рентгеновского переходного излучения макроскопической теории для тонкой стопки пластин (см., например, [4], формулу (48)).

4. Из формул (24) и (25) видно, что фурье-компоненты полей излучения как в случае Лаув, так и в случае Брвгга содержат в знаменателе, как видно из (32), величину

$$X = \cos \varphi - \cos x = (\cos \varphi' \operatorname{ch} \varphi'' - \cos x' \operatorname{ch} x'') -$$
(33)

 $-i(\sin \varphi' \operatorname{sh} \varphi'' - \sin x' \operatorname{sh} x''),$

где

 $\varphi = \varphi' + i\varphi'', \quad x = x' + ix''.$

При $|X|^2 \ll 1$ мы имеем максимум излучения. Для этого необходимо потребовать, например, чтобы

$$|\varphi''| \ll 1, |x''| \ll 1,$$
 (34)

$$\cos \varphi' - \cos x' = 0. \tag{35}$$

Из условий (34) следует, что толщина каждой кристаллической пластины а должна быть много меньше длины поглощения как аномально, так и мормально проходящих волн. Условие (35) можно записать в виде

$$\varphi' - x' = 2n\pi, \ \pi. \ e. \left(\frac{\omega}{\upsilon} - \lambda_0\right)(a+b) + \Delta_1' \lambda_0 a = 2n\pi$$
 (36)

нлн

$$\varphi' + x' = 2 n\pi, \ \pi. \ e. \left(\frac{\omega}{v} - \lambda_0\right)(a+b) + \Delta_2 \lambda_0 a = 2 n\pi,$$
 (37)

где $\Delta_j = \Delta_j + i\Delta_j$, *n* -- целое число.

Найдем теперь амплитуды полей излучения при выполнении условий (34) и (35). Будем различать два случая:

А) когда вся стопка кристаллических пластин является почти прозрачной, т. е. $|N\varphi''| \ll 1$, $|Nx''| \ll 1$;

Б) когда поглощение во всей стопке велико как для нормально, так и для аномально проходящих волн, т. е. $|N\varphi''| > 1$, |Nx''| > 1.

• Рассмотрим подробно эти случаи.

А. Раскрывая неопределенности в формулах (24) и (25), в случае Лауэ получаем:

$$E_{(N)}^{\text{sax}} = -\frac{\psi_N}{2(\Delta_2 - \Delta_1)} \left\{ N \exp(iN\varphi) [1 - \exp(-i\varphi_0)] [(2 \ \Delta_2 + g_0) E^{\text{pac}} + \\ + \xi g_h E_h^{\text{pac}}] + \frac{\sin N\varphi}{\sin \varphi} [\exp(i(\varphi - \varphi_0)) - \exp(-i\varphi)] \times \quad (38) \\ \times [(2 \ \Delta_1 + g_0) E^{\text{pac}} + \xi g_h E_h^{\text{pac}}] \right\}, \quad (38)$$
$$E_{h(N)}^{\text{sax}} = \frac{\psi_N}{2(\Delta_2 - \Delta_1)} \left\{ (2 \ \Delta_1 + g_0) N \exp(iN\varphi) [1 - \\ -\exp(-i\varphi_0)] \left[\frac{2 \ \Delta_2 + g_0}{\xi g_h} E^{\text{pac}} + E_h^{\text{pac}} \right] + (2 \ \Delta_2 + g_0) [\exp(i(\varphi - \varphi_0)) - \\ -\exp(-i\varphi_0)] \frac{\sin N\varphi}{\sin \varphi} \left[\frac{2 \ \Delta_1 + g_0}{\xi g_h} E^{\text{pac}} + E_h^{\text{pac}} \right] \right\}, \quad (45)$$

$$E_{(N)}^{\text{max}} = -\frac{\psi}{2\,\overline{p}_{N'}(\Delta_{2}-\Delta_{1})} \left\{ \left[(2\,\Delta_{2}+g_{0})\,E^{\text{pac}}+\xi\,g_{h}\,E^{\text{pac}}_{h}\right] N\left[1-\frac{1}{2\,\overline{p}_{N'}(\Delta_{2}-\Delta_{1})}\right] \left\{ \left[(2\,\Delta_{2}+g_{0})\,E^{\text{pac}}+\xi\,g_{h}\,E^{\text{pac}}_{h}\right] \exp\left(iN\varphi\right) \times \frac{\sin\,N\varphi}{\sin\,\varphi} \left[\exp\left(i\left(\varphi-\varphi_{0}\right)\right)-\exp\left(-i\varphi\right)\right] \right\}, \quad (39)$$

$$E_{h}^{\text{max}}\left[0\right] = -\frac{1}{2\,\overline{p}_{N}\left(\Delta_{2}-\Delta_{1}\right)} \left\{ \left(2\,\Delta_{1}+g_{0}\right)\,N\exp\left(iN\varphi\right)\left[1-\frac{1}{2\,\overline{p}_{N}\left(\Delta_{2}-\Delta_{1}\right)}\right] \left\{ \left(2\,\Delta_{1}+g_{0}\right)\,N\exp\left(iN\varphi\right)\left[1-\frac{1}{2\,\overline{p}_{N}\left(\Delta_{2}-\Delta_{1}\right)}\right] \left\{ \left(2\,\Delta_{2}+g_{0}\right)\,\frac{\sin\,N\varphi}{\sin\,\varphi} \times \left(\exp\left(-i\varphi_{0}\right)\right)\right\} \exp\left(-i\varphi_{0}\right)\right\} \left[\frac{2\,\Delta_{2}+g_{0}}{\xi\,g_{h}}\,E^{\text{pac}}+E_{h}^{\text{pac}} \right] + \left(2\,\Delta_{2}+g_{0}\right)\,\frac{\sin\,N\varphi}{\sin\,\varphi} \times \left[\exp\left(i\left(\varphi-\varphi_{0}\right)\right)-\exp\left(-i\varphi\right)\right] \left[\frac{2\,\Delta_{1}+g_{0}}{\xi\,g_{h}}\,E^{\text{pac}}+E_{h}^{\text{pac}} \right] \right\}.$$

Формулы (38) и (39) остаются в силе и в том случае, когда условие (35) выполняется приближенно. Для этого достаточно потребовать, чтобы выполнялось неравенство

 $N|\mathbf{x}'-\mathbf{x}_0|\ll 1,\tag{40}$

где

$$x_0=\pm \varphi'+2n\pi.$$

Анализируя формулы для излучения, образованного в одной кристаллической пластине, в [1] было показано, что когда величина D_a (см. (5)). входящая в знаменатели величин E_a^{pac} и E_{ha}^{pac} (см. (3)), достигает минимума (по модулю), мы имеем максимум излучения, названный динамическим. Ширина этого максимума в случае прозрачной пластины ($|\lambda_0 a\Delta_j^*| \ll 1$) определяется условием

$$|\lambda_0 \alpha (\Delta_l - \Delta_l^0)| \sim 1, \tag{41}$$

где Δ_j^0 — соответствующее значение величины Δ_j в динамическом максимуме.

Варьируя толщину а кристаллических пластин и расстояние b между ними, можно добиться того, чтобы динамические максимумы интерференционно усиливались, т. е. чтобы условия (34) и (35) имели место в динамическом максимуме.

При этом, как видно из (38) и (39), амплитуды полей $E_{(N)}^{\text{вак}}$ и $E_{h(N)}^{\text{вак}}$ (или $E_{h(0)}^{\text{вак}}$) будут пропорциональны числу пластин N, а интенсивности — N^2 . Однако, как видно из (40) и (41), ширина максимума будет уменьшена, грубо говоря, в N раз. Таким образом, полная интенсивность или число квантов, проинтегрированная по всему максимуму, будет примерно увеличена в N раз в рассматриваемом случае прозрачной стопки кристаллических пластин.

Б. Рассмотрим теперь случай непрозрачной стопки кристаллических пластин.

Поскольку имеют место соотношения [1]:

$$\Delta_1 < \Delta_2 < 0$$

в случае Лауэ и

 $\Delta_2 < 0 < \Delta_1, \quad \Delta_1 + \Delta_2 > 0$

в случае Брэгга, из неравенств

в этих двух случаях на основе (24) и (25) соответственно получаем

$$E_{(N)}^{\text{saw}} = \frac{\xi g_h}{2 \, \Delta_1 + g_0} E_{h(N)}^{\text{saw}} = \frac{[1 - \exp(-i\gamma_0)] \exp\left[iN\left(\frac{\omega}{\upsilon} - \lambda_0\right)(a+b)\right]}{2 \left(\Delta_2 - \Delta_1\right) \lambda_0 a \, \Delta_1} \times \left\{(2 \, \Delta_2 + g_0) \, E^{\text{pac}} + \xi g_h \, E^{\text{pac}}_h\right\}, \qquad (42)$$

$$E_{(N)}^{\text{saw}} = \frac{\exp\left[iN\left(\frac{\omega}{\upsilon} - \lambda_0\right)(a+b)\right] \exp\left(-i\varphi_0/2\right)}{\sin\left((x+\varphi)/2\right)} \times \left[\sum_{\substack{n=1\\ n \neq n}}^{n n n} \frac{x + \varphi - \varphi_0}{2}\right] \left[E^{\text{pac}} + \frac{\xi g_h}{2 \, \Delta_1 + g_0} \, E^{\text{pac}}_h\right], \qquad (43)$$

$$E_{h(0)}^{\text{saw}} = \frac{\exp\left(-i\varphi_0/2\right) \sin\left((x-\varphi+\varphi_0)/2\right)}{\sin\left((x-\varphi)/2\right)} \times \left[\frac{2 \, \Delta_2 + g_0}{\xi g_n} \, E^{\text{pac}} + E^{\text{pac}}_h\right].$$

Формула (42) записана в предположении, что выполняется условие (36). Если же выполняется условие (37), то в (42) следует произвести замену индексов 1 \neq 2. Формула (42) имеет место также и тогда, когда условие (35) выполняется приближенно. Для этого достаточно потребовать, чтобы

$$|\mathbf{x}'-\mathbf{x}_0|\ll |\Delta, \lambda_0 \alpha|,$$

где j=1 при $x_0 = \varphi' + 2n\pi$ и j=2 при $x_0 = -\varphi' + 2n\pi$. Аналогичные ширины получаются также и в формулах (43).

Сравнивая соответственно формулы (42)—(44) и (38)—(40), мы видим, что выводы, сделанные в конце пункта А, справедливы и в рассматриваемом случае, если только заменить N на $N_{sobo} \sim |\lambda_0 \alpha \Delta_j|^{-1}$.

5. Таким образом, в результате интерференции излучений, образованных в разных пластинах, в стопке появляются характерные максимумы, определяемые условиями (34) и (35). Такая ситуация типична для переходного излучения, образованного в регулярной стопке (см., например, [4]).

Изменяя a и b, можно добиться того, чтобы динамические максимумы, возникающие в каждой кристаллической пластине, совпадали с интерференционными максимумами, обусловленными стопкой. При этом спектральная интенсивность динамических максимумов эначительно возрастает, но ширина соответственно существенно уменьшается. В результате полная интенсивность динамического максимума будет увеличена примерно в N раз в случае прозрачной стопки и в N_{эфф} раз в случае непрозрачной стопки.

До сих пор мы рассматривали идеальную стопку, считая, что толщины всех кристаллических пластин и расстояния между ними совершенно одинаковы, а все кристаллы ориентированы одинаково. Естественно поставить вопрос, что произойдет, если эти толщины и расстояния, а также ориентация кристаллов имеют некоторый разброс. Неточность в ориентации кристаллов приводит к разбросу значений брэгговской частоты. Если эти неточности меньше, чем угловая ширина, определяемая условием (41), то результат будет такой же, как и в случае стопки кристаллов с идеальной ориентацией.

Что касается разбросов $\langle \Delta a^2 \rangle$ и $\langle \Delta b^2 \rangle$ величин *a* и *b*, то здесь дело будет обстоять аналогично тому, как это имело место в случае обычной стопки [5], а именно, слабо неидеальная стопка будет вести себя как идеальная, если выполняется условие

 $V \leq \Delta a^2 > + < \Delta b^2 > \ll \frac{c}{mN^{1/2}}$

для прозрачной стопки, а для непрозрачной стопки N следует заменить на $N_{\rm soph}$. Условие (45) получается из аналогичного условия (16) работы [5], если иметь в виду, что угол излучения в боковом пятне порядка единицы.

Ереванский физический институт

Поступила 23. І. 1981

ЛИТЕРАТУРА

1. Г. М. Гарибян, Ян Ши. ЖЭТФ, 63, 1198 (1972).

2. Г. М. Гарибян. ЖЭТФ, 35, 1435 (1958).

3. М. Борн, Э. Вольф. Основы оптики, М., 1970, стр. 92.

4. Г. М. Гарибян. Научное сообщение ЕрФИ, 27 (73) — 1973.

5. Г. М. Гарибян, Л. А. Геворкян, Ян Ши. ЖЭТФ, 66, 552 (1974).

ՔՅՈՒՐԵՂԱԿԱՆ ԹԻԹԵՂՆԵՐԻ ՇԵՐՏՈՒՄ ԱՌԱՋԱՑԱԾ ՌԵՆՏԳԵՆՅԱՆ ԱՆՑՈՒՄԱՅԻՆ ՃԱՌԱԳԱՑԹՄԱՆ ԳԻՆԱՄԻԿ ՄԱՔՍԻՄՈՒՄՆԵՐԸ

Գ. Մ. ՂԱՐԻԲՏԱՆ, ՏԱՆ ՇԻ

Εյուրեղի միջով արագ լիցթավորված մասնիկների անցման ժամանակ բյուրեղի ցանցի վրա լիցբի դաշտի դիֆրակցիայի և ալիջների դինամիկ փոխազդեցության պատճառով առաջանում են ձառադալթման նեղ ու բարձր մաջսիմումներ։ Բյուրեղական թիթեղների կանոնավոր շերտով մասնիկի անցման դեպթում տեղի է ունենում տարրեր թիթեղներում առաջացած ալիջների ինտերֆերենցիա։ Գտնված են վերոհիշյալ դինամիկ մաջսիմումների ուժեղացման պայմանները։

DYNAMICAL MAXIMA OF X-RAY TRANSITION RADIATION FORMED IN A STACK OF CRYSTAL PLATES

G. M. GARIBIAN. C. YANG

The passage of a fast charged particle through a crystal is known to result in narrow and high radiation maxima due to the diffraction of the charge field on a crystal lattice and to dynamical interactions of waves. When the particle transmits a stack of regularly arranged crystal plates, the interference of waves from different plates takes place. Here the conditions are found for the enhancement of dynamical maxima.