ВРАЩЕНИЕ СВЕРХПЛОТНЫХ КОНФИГУРАЦИЙ В ТРЕТЬЕМ ПРИБЛИЖЕНИИ ПО УГЛОВОЙ СКОРОСТИ И ЭНЕРГИЯ ДЕФОРМАЦИИ

в. Ф БАЛЕК, М. О. МИНАСЯН

Вычислены параметры ряда моделей вращающихся нейтронных звезд, которые определяют их внешнее гравитационное поле в приближении Ω^3 . Найдена энергия деформации порядка Ω^4 и оценсна ее роль в качестве источника внутренней энергии нейтронных звезд.

В связи с поисками теплового излучения пульсара в Крабовидной туманности [1] в последние годы интенсивно исследуется вопрос о влиянии различных процессов, могущих протекать в нейтронных звездах, на соотношение между мощностью их теплового излучения и их возрастом [2—4]. В результате была получена некая картина тепловой эволюции нентронных звезд, включающая два экстремальных случая: «медленное осгывание» без учета эффекта п-конденсации и «быстрое остывание» с учетом этого эффекта. Можно было бы ожидать, что вращение нейтронной звезды способно изменить описанную картину, однако это возможно лишь при условии, что эначительная часть энергии вращения выделяется в недрах звезды. Мы же рассмотрим случай, когда таким путем выделяется лишь та малая часть энергии вращения, которая связана с деформацией жидкого ядра звезды.

Твердотельное вращение сверхплотных звезд, рассматриваемое как возмущение в сферически-симметричной задаче общей теории относительности (ОТО), исследовалось в [5, 6] в приближении Ω^2 и в [7] в приближении Ω^3 (Ω — угловая скорость вращения). Первым приближением, в котором определяется деформация звезды, является Ω^2 . Однако в ОТО значения добавки к моменту инерции следует вычислять в следующем по Ω приближении, так как они зависят от пропорционального Ω^3 члена в метрике, не имеющего аналога в ньютоновской теории. В приближении Ω^3 мы находим также величину энергии деформации (порядка Ω^4), исходя из соотношения между этой величиной и добавкой к моменту инерции.

В первой части настоящей работы приводится полная система уравнений в приближении Ω^2 с уточненными условиями сшивки (ср. с [8]) и уравнения в приближении Ω^3 , определяющие как дипольный, так и октупольный члены в разложении поля сил, вызывающих эффект Лензе— Тирринга. Далее приводятся результаты численных расчетов параметров вращающихся конфигураций, проведенные с использованием двух уравнений состояния (без учета и с учетом эффекта л-конденсации). Во второй части обсуждается вопрос о роли энергии деформации в качестве источника внутренней энергии нейтронных звезд.

1. Вращающиеся сверхплотные конфигурации в приближении Оз

Для аксиально-симметричной стационарной системы можно ввести систему координат r, ϑ, φ, t , в которой метрика имеет вид

$$ds^{2} = (e^{\nu} - \omega^{2} e^{\nu} r^{2} \sin^{2} \vartheta) dt^{2} - 2 \omega e^{\nu} r^{2} \sin^{2} \vartheta d\varphi dt - e^{\lambda} dr^{2} - e^{\nu} r^{2} (d\vartheta^{2} + \sin^{2} \vartheta d\varphi^{2})$$
(1)

(используется система единиц, в которой с = G = 1). Для описания внутреннего строения вращающихся конфигураций удобно ввести величину

$$\psi = \int_{0}^{P} \frac{dP}{P+\rho},$$

где р и P — плотность и давление, умноженные на 4 π . Подходящим параметром в теории возмущений является величина $\beta = \Omega^2 (2 \rho_c)^{-1}$, где ρ_c — значение ρ в центре конфигурации.

Разложения метрических коэффициентов и величин ρ, P, ψ со степенями β не выше 3/2 имеют вид

$$\omega = \sqrt{\beta}q + \beta \sqrt{\beta} q,$$

$$e^{-\lambda} = e^{-\lambda^{0}} (1 + \beta f),$$

$$e^{\nu} = e^{\nu^{0}} (1 + \beta \Phi),$$

$$e^{\mu} = 1 + \beta U,$$

$$P = P^{0} + \beta \Delta P,$$

$$\varphi = p^{0} + \beta \Delta \rho,$$

$$\psi = m + \beta N.$$
(2)

Представим функции q и q в виде рядов по производным полиномов Лежандра P, зависящим от $\gamma = \cos \vartheta$, т. е.

$$q = \sum_{\text{Hever}} q_l(r) \frac{dP_l}{d\gamma}$$
(3)

и аналогично для q, а функции f, Φ , U, ΔP , $\Delta \rho$, N-в виде рядов по P_i , т. е.

$$f = \sum_{\text{yer}} f_l(r) P_l(\gamma) \text{ M T. } \mathcal{A}.$$
(4)

В (3) входят слагаемые с нечетными значениями *l*, а в (4) — с четными значениями *l* вследствие симметрии конфигураций относительно экваториальной плоскости. Анализ уравнений для радиальных частей искомых функций приводит к выводу, что в (3) следует оставить лишь член с l=1, в (4) — члены с l=0 и l=2 [6], а в выражении для q — члены с l=qи l=3 [9].

Внутри распределения масс система описывается следующими уравнениями:

$$\begin{aligned} \frac{dP^{0}}{dr} &= (p^{0} + P^{0})F, \\ \frac{du}{dr} &= pr^{3}, \\ \frac{dv^{0}}{dr} &= -2F, \\ \frac{d^{2}Q}{dr^{3}} &+ \left[\frac{4}{r} - re^{\lambda^{0}}(p^{0} + P^{0})\right]\frac{dQ}{dr} - 4e^{\lambda^{*}}(p^{0} + P^{0})Q = 0, \\ \Phi_{I} &= -N_{I} + (K + c_{10})\delta_{I0} - K\delta_{I2}, \end{aligned}$$
(5)
$$f_{I} &= -N_{I} + (\beta_{0} - c_{10}\alpha)\delta_{I0} + \frac{1}{2}(\beta_{0} - 3K)\delta_{I2}, \\ \frac{d^{2}N_{I}}{dr^{2}} + X\frac{dN_{I}}{dr} + Y_{I}N_{I} = (Z + c_{10}g)\delta_{I0} + V\delta_{I2}, \\ \frac{dU_{I}}{dr} &= \frac{dN_{I}}{dr} - 2FN_{I} - \left[\beta_{0}\left(\frac{1}{r} - F\right) + K\left(\frac{1}{r} + F + 2x\right) + \right. \\ &+ c_{10}h\left[\delta_{I0} - \left[\frac{1}{2}\beta_{0}\left(\frac{1}{r} - F\right) - K\left(\frac{5}{2r} - \frac{1}{2}F + 2x\right)\right]\right]\delta_{I2}, \\ &+ \left[\frac{4}{r} - re^{\lambda^{*}}(p^{0} + P^{0})\right]\frac{dq_{I}}{dr} - e^{\lambda^{*}}\left[\frac{(l+2)(l-1)}{r^{2}} + 4(p^{0} + P^{0})\right]\tilde{q}_{I} = \\ &= A\delta_{II} + B\delta_{I3}, \end{aligned}$$

где

$$F = -(u + P^{0}r^{3}) e^{\lambda^{0}} r^{-2}, e^{\lambda^{0}} = r/(r - 2u), Q = q + (2p_{c})^{1/2},$$

$$X = 2r^{-1} + e^{\lambda^{0}} (u - p^{0}r^{3}) r^{-2} - F,$$

$$Y_{l} = -4F^{2} + e^{\lambda^{0}} \left[5p^{0} + 9P^{0} + (p^{0} + P^{0}) \frac{dp^{0}}{dP^{0}} - l(l+1)r^{-2} \right],$$

$$Z = 2\beta_{0} \left[Fr^{-1} - F^{2} + e^{\lambda^{0}} (p^{0} + 3P^{0})\right] + K(\zeta F + Z_{A}), V = \frac{1}{2} (Z - 3KZ_{B}),$$

$$K = \frac{2}{3}r^{2}Q^{2}e^{-r^{0}}, \beta_{0} = K \left[1 - 4(p^{0} + P^{0})r^{3} - e^{-\lambda^{0}}r^{2}x^{2}\right], x = Q^{-1}\frac{dQ}{dr},$$

$$\zeta = -2r^{-1} + 16(p^{0} + P^{0})r - 2F \left[1 - 2(p^{0} + P^{0})\left(3 + \frac{dp^{0}}{dP^{0}}\right)r^{2}\right] - 2x \left[1 - 8(p^{0} + P^{0})r^{2} - 2e^{-\lambda^{0}}x\right],$$

$$\begin{split} &Z_A = 6\,r^{-2} + 4\,Fr^{-1} + 4F^2 - 4e^{\lambda s}\,P^0 + \varkappa\,(4\,r^{-1} + 6\,F + \varkappa),\\ &Z_B = 6\,r^{-2} + 4\,Fr^{-1} - 2\,e^{\lambda s}\,(2\,r^{-2} - \wp^0 - P^0) + \varkappa\,(4\,r^{-1} + 4\,F + \varkappa),\\ &\alpha = -1 + 2\,(\wp^0 + P^0)\,r^2,\,\,\xi = (\wp^0 + P^0)\left[\,2\,r + \left(\frac{d\wp^0}{dF^0} + 1\right)Fr^2\right],\\ &h = -r^{-1} - F - \varkappa\,(r^{-1} - F),\,\,g = 2\,F(h + \xi) - 2\,\varkappa\,e^{\lambda s}\,(\wp^0 + 3\,P^0),\\ &A = 4\,e^{\lambda s}\,Q\,(\wp^0 + P^0)\left[\,\frac{1}{2}\,\left(\,3 + \frac{d\wp^0}{dP^0}\right)N_0 + \varkappa\,c_{10} - \beta_0 + K\,\right] - \\ &- \frac{dQ}{dr}\left[\,2\,\frac{dU_0}{dr} - \frac{1}{2}\,K\left(\zeta + \frac{2}{r} + 2\,F + 2\,\varkappa\right) - c_{10}\,\xi\,\right] - B,\\ &B = \frac{1}{5}\,\left[\,4\,e^{\lambda s}\,Q\,(\wp^0 + P^0)\,\left[\,\frac{1}{2}\,\left(\,3 + \frac{d\wp^0}{dP^0}\right)N_2 - \frac{1}{2}\,\beta_0 + \frac{1}{2}\,K\,\right] - \\ &- \frac{dQ}{dr}\left[\,2\,\frac{dU_2}{dr} - \frac{1}{4}\,K\left(\zeta + \frac{2}{r} + 2\,F + 2\,\varkappa\right)\,\right]\right\}. \end{split}$$

Из определения ф следует

$$\Delta P_{l} = \frac{1}{2} \left(\rho^{0} + P^{0} \right) N_{l}, \qquad (6)$$

$$\Delta \rho_l = \frac{1}{2} \left(\rho^0 + P^0 \right) \frac{d\rho^0}{dP^0} N_l \,. \tag{7}$$

Выражения для q, f_l , Φ_l и U_l вне распределения масс ("внешние решения") приведены в [6], а для $\tilde{q}_l - в$ [9]. Внешние и внутренние решения должны сшиваться на поверхности конфигурации $r = R_s(\vartheta)$, определяемой уравнением

$$\psi(R_s, \vartheta) = 0. \tag{8}$$

Из (8) следует, что в приближении Ω^2 поверхность представляет собой эллипсоид вращения; его экваториальный и полярный радиусы обозначены соответственно через R_e и R_p . В действительности, однако, сшивка производится на сфере r = R, где R — радиус статической конфигурации («приближение Ω^0 »), поскольку на ней $\Delta \rho$ обращается в нуль (см. (7)).

Постоянные, входящие во внешние решения q и Φ_0 , связаны соответственно с моментом инерции I сферической конфигурации и с добавкой к массе ΔM , обусловленной вращением. Функция q вдали от источника имеет вид

$$\widetilde{q} = c_1^* r^{-3} + O(r^{-4}) + [c_3^* r^{-5} + O(r^{-6})] \frac{dP_3}{d\gamma}.$$
(9)

Первый член в (9) определяет добавку ΔI к моменту инерции согласно формуле

$$\Delta I = -\frac{1}{2} \beta (2 \rho_c)^{-1/2} c_1^*. \tag{10}$$

Из известного соотношения для момента импульса

$$J=2\pi\int T_{\varphi}^{t}\sqrt{-g}\,dr\,d\vartheta,$$

где T_{φ}^{t} — компонента тензора внергии-импульса, g — определитель метрического тензора, для ΔI получаем другое выражение

$$\Delta I = \frac{2}{3} \beta (2 \rho_c)^{-1/2} \int_0^R e^{(\lambda^0 - \gamma^0)/2} (\rho^0 + P^0) Q r^4 H dr, \qquad (11)$$

где

$$H = \frac{1}{2} \left(3 + \frac{d\rho^0}{dP^0} \right) \left(N_0 - \frac{1}{5} N_2 \right) + 2 U_0 - \frac{2}{5} U_2 + \frac{9}{20} (K - \beta_0) + \frac{1}{2} (\alpha - 1) c_{10} + \frac{1}{Q} \frac{\tilde{q}_1}{dr} \cdot \frac{1}{Q} \frac{\tilde{q}_1}{$$

Для выяснения физического смысла члена с c_3^* в (9) воспользуемся аналогией между силой Кориолиса $\mathbf{F}_c = \sqrt{g_{tt}} [\mathbf{v}, \nabla \times \mathbf{g}]$, действующей на частицу с единичной массой, движущуюся со скоростью \mathbf{v} ($g_a = -g_{ta}/g_{tt}$), и магнитной силой $\mathbf{F}_M = [\mathbf{v}, \nabla \times \mathbf{A}]$, действующей на частицу с единичным зарядом и скоростью \mathbf{v} в магнитном поле с потенциалом \mathbf{A} .

Введем

$$E = -18\beta \sqrt{\beta} c_3 \tag{12}$$

и неприводимый тензор третьего ранга $E_{n\beta\gamma}$ с компонентами $E_{333} = -2E_{332} = -2E_{331} = E$ (остальные компоненты, кроме тех, которые отличаются от выписанных ; перестановкой индексов, равны нулю). Учитывая равенства $g_{tr} = g_{tb} = 0$ и асимптотику (9) в выражении для $g_{t\varphi}$, после перехода к системе координат x^{α} , декартовой на бесконечности, найдем

$$g_{a} = 2 \eta_{a\beta\gamma} \int^{\beta} n^{\gamma} r^{-2} [1 + O(r^{-1})] + \frac{1}{6} \eta_{a\beta\gamma} E^{\beta}_{\mu\nu} n^{\mu} n^{\nu} n^{\gamma} [1 + O(r^{-1})], \quad (13)$$

где $n^{\alpha} = x^{\alpha} r^{-1}$, $\eta_{\alpha\beta\gamma}$ — полностью антисимметричный единичный тензор $(\eta_{123} = 1)$.

Из сравнения (13) с разложением A по мультипольным моментам можно заключить, что $E_{\alpha\beta\gamma}$ соответствует октупольному магнитному моменту; квадрупольный член в (13) отсутствует вследствие симметрии рассматриваемых конфигураций. В рамках линеаризованной ОТО можно показать, что

$$E = \frac{3}{2} \, \Omega \int \rho \, r_{\perp}^2 \, (5 \, r_{\perp}^2 - 4 \, r^2) \, d^3 r,$$

где r_1 — расстояние до оси вращения (подчеркнем, что $E \sim \Omega^3$).

Для статической конфигурации плотность числа барионов, умноженная на 4л, дается выражением

$$n^{0} = \frac{1}{m_{0}} (p^{0} + P^{0}) \exp\left[\frac{\gamma^{0}(r) - \gamma^{0}(R)}{2}\right], \quad (14)$$

где m_0 — масса нуклида Fe^{56} , деленная на 56. Для вращающейся конфигурации аналогичная величина дается соотношением

$$n = n^{0} \left(1 + \frac{1}{2} \beta \frac{d \rho^{0}}{d P^{0}} N \right).$$
 (15)

Полное число барионов внутри сферы раднуса r с точностью до членов порядка β запишем в виде $a = a^0 + \beta \Delta a$. Для величин a^0 и Δa имеем

$$\frac{da^0}{dr} = n^0 e^{\lambda^0/2} r^2,$$
 (16)

$$\frac{d\Delta a}{dr} = \frac{1}{2} n^0 e^{\lambda s/2} r^2 \left[\left(1 + \frac{d\rho^0}{dP^0} \right) N_0 + 2 U_0 - \beta_0 + K + c_{10} \alpha \right].$$
(17)

Решая эти уравнения, получим полное число барионов $N_B = a(R)$ статической конфигурации и добавку к нему $\Delta N_B = \beta \Delta a(R)$.

Максимальная угловая скорость твердотельного вращения Ω_m в ОТО определяется условием $\frac{d\Psi(R_e, \pi/2)}{dr} = 0$, откуда с учетом (8) имеем

$$\Omega_m^2 = 2 \, \rho_c \, \frac{dm}{dR} \left[-\frac{d^2 m}{dR^2} \left(N_0 - \frac{1}{2} \, N_2 \right) \, \Big/ \frac{dm}{dR} + \frac{d}{dR} \left(N_0 - \frac{1}{2} \, N_2 \right) \right]^{-1}, \tag{18}$$

где N_0 и N_1 берутся при r = R.

Параметры вращающихся конфигураций типа нейтронных звезд в приближении Ω^3 были получены в результате решения системы уравнений (5), (16), (17) и сшивки решений на поверхности конфигурации. Свободный параметр теории $\Delta \rho_c$ (изменение центральной плотности, обусловленное вращением) подобран таким образом, чтобы $\Delta N_B = 0$, т. е. чтобы массы, радиусы и моменты инерции вращающихся конфигураций можно было непосредственно сравнивать с соответствующими величинами, вычисленными для тех же конфигураций в отсутствие вращения.

В таблицах I и II приведены параметры конфигураций типа нейтронных звезд, полученные с использованием двух вариантов уравнения состояния: для реального барионного газа [10] и для вырожденного вещества, содержащего л-конденсат и переходящего при больших плотностях в идеальный кварковый газ [11]. К параметрам статических конфигураций относятся: ρ_c , P_c (давление в центре), M и R, которые получены в нулевом приближении по Ω , и момент инерции I, вычисленный в первом приближении по Ω , но не зависящий от угловой скорости. Остальные величины соответствуют конфигурациям, вращающимся с максимальной угловой скоростью; в частности, W — энергия деформации, вычисленная при $\Omega = \Omega_m$ (эта величина определена в следующем разделе). Чтобы пе30

1

Таблица 1

the second second	^Р с	М	∆ <i>M</i>	R	<i>R_p</i>	<i>R</i> е	10 ⁻⁴⁵ . <i>I</i>	10 ⁻⁴⁵ Δ <i>I</i>	$10^{-51} (-E/c)$	10 ⁻⁴⁹ W	Ω _m
	(г·см ⁻³)	(M _O)	(<i>M</i> ⊙)	(RN)	(км)	(км)	(г.см ²)	(r·cm ²)	(r·cm ³)	(spr)	·(e ⁻¹)
123456	2,84 E 14 5,51 E 14 1,14 E 15 2,44 E 15 1,16 E 16 3,55 E 16	0,253 0,627 1,17 1,50 1,38 1,16	$\begin{vmatrix} 1,47 & E-4 \\ 3,06 & E-3 \\ 1,70 & E-2 \\ 2,73 & E-2 \\ 9,16 & E-2 \\ 4,77 & E-2 \end{vmatrix}$	17,7 13,0 11,6 10,2 7,4 6,5	17,1 11,5 10,2 10,5 4,5 5,1	21,9 16,1 14,3 12,8 8,1 7,4	0,163 0,483 0,98 1,12 0,568 0,329	0,0155 0,122 0,338 0,473 0,062 0,045	0,020 0,285 0,853 0,482 0,532 0,180	1,25 69,0 5,26 E 2 1,04 E 3 9,00 E 2 5,91 E 2	1,80 E 3 4,76 E 3 7,89 E 3 9,36 E 3 2,41 E 4 2,28 E 4

Параметры вращающихся нейтронных звезд, не содержащих т-конденсат

Таблица 2

Параметры вращающихся нейтронных звезд, содержащих т-конденсат

A DE LA	. Р _с	. M	∆M	<i>R</i>	<i>R_p</i>	<i>R</i> е	10 ⁻⁴⁵ <i>I</i>	10 ⁴⁵ Δ <i>I</i>	$-10^{-51} E/c$	10 ⁻⁴⁹ W/	Ω _m
	(дин · см ⁻²)	(M _☉)	(M _☉)	(км)	(км)	(км)	(г.см ²)	(r·cm ²)	(r·cm ³)	(spr)	(a ^{−1})
123456	1,27 E 33 6,74 E 33 2,24 E 34 7,11 E 34 7,95 E 35 8,93 E 36	0,022 0,231 0,88 1,32 0,95 0,73	2 E-4 3.49 E-2 1.22 E-1 6.80 E-2 2.19 E-2	574 8,9 11,9 12,6 9,5 5,8	562 7,2 10,1 11,8 9,7 4,8	712 10,2 13,9 15,3 11,9 6,7	0,002 0,101 0,96 1,65 0,494 0,117	1,7 E-5 7,4 E-4 0,0634 0,287 0,091 6,60 E-3	7,3 E-9 1,8 E-3 0,137 0,315 0,0155 7,85 E-3	3,5 E-6 1,0 78,7 3,20 E 2 1,76 E 2 62,5	89,5 5,54 7,05 <i>E</i> 3 7,60 <i>E</i> 3 8,79 <i>E</i> 3 1,95 <i>E</i> 4

рейти к любому заданному значению Ω добавки к массе, радиусу и моменту инерции следует умножить на $(\Omega/\Omega_m)^2$, E — на $(\Omega/\Omega_m)^3$, а W — на $(\Omega/\Omega_m)^1$.

Согласно [12], полная энергия вращения, вычисленная при $\Delta N_B = 0$, в приближении Ω^2 равна кинетической энергии

$$\Delta M = \frac{1}{2} I \Omega^2. \tag{19}$$

Это соотношение выполняется с хорошей точностью для конфигураций, параметры которых приведены в табл. 1. Для данных табл. 2 соотношение (19) нарушается, но в этом случае значения ΔI , вычисленные по формулам (10) и (11), также несколько отличаются друг от друга. Итак, естьоснования предполагать, что численное интегрирование встречается здесьс некоторыми трудностями, связанными, возможно, с использованием уравнения состояния почти несжимаемой жидкости (в табл. 2 приведены значения ΔI , вычисленные по формуле (10)).

В результатах, полученных при условии $\Delta N_B = 0$, имеются некоторые пробелы при значениях N_B , близких к экстремальным, которые можно устранить, если провести расчеты при условии $\Delta \rho_c = 0$. В приближении Ω^2 такие расчеты проведены в [8, 13].

На рис. 1 и 2 изображена зависимость момента инерции вращающихся конфигураций от величины $N_{57} = N_B / 10^{57}$, полученная при условии $\Delta \rho_c = 0$ (сплошные линии). Для сравнения приведены данные, вычисленные при условии $\Delta N_B = 0$ (крестики), а также данные для статических.

Рис. 1. Момент инерции нейтронных звезд, не содержащих π-конденсат, как функция полного числа барионов для вращающихся конфигураций (сплошная линия и крестики) и для сферических звезд (пунктир). В направлении стрелки плотность в центре конфигураций возрастает.

Рис. 2. Момент инерции нейтронных звезд, содержащих *т*-конденсат, как функция полного числа барионов. Обозначения те же, что и на рис. 1.

конфигураций (лунктир). Как видно из рисунков, имеются некоторые различия между результатами, полученными при условиях $\Delta \rho_e = 0$ и $\Delta N_B = 0$. Такие расхождения имеют место также и для ΔM , так что при первом условни соотношение (19) не выполняется в точности даже для конфигураций, не содержащих л-конденсат (расхождения достигают нескольких десятков процентов). Этот результат дает основание думать, что более достоверными являются значения величин, полученные при условин $\Delta N_{\rm J} = 0$. Согласно этим значениям, добавка к моменту инерции устойчивых нейтронных звезд, не содержащих л-конденсат, достигает 40%, а для конфигураций с л-конденсатом, состоящих преимущественно из почти несжимаемой жидкости, 15%.

2. Роль энергии деформации в качестве источника внутренией энергии в нейтронных звездах

Энергия вращения вырожденной конфигурации дается соотношением [7]

$$E_R = \frac{1}{2}I\Omega^2 + \frac{3}{4}\Delta I\Omega^2 \tag{20}$$

(здесь опущены члены порядка $O(\Omega^6)$). По определению величина E_R представляет собой разность значений полной энергии вращающейся конфигурации и энергии той же конфигурации в состоянии покоя с одинаковой энтропией в каждом элементе объема. Для вырожденных конфигураций зависимостью E_R от распределения энтропии можно пренебречь (величина ΔI может сильно зависеть от энтропии при малых угловых скоростях, но этот случай не реализуется при типичных значениях температуры и угловой скорости нейтронных звезд).

Согласно нерелятивистской теории, при уменьшении угловой скорости до нуля без одновременного изменения распределения массы конфигурация потеряла бы энергию $E'_R = \frac{1}{2} (I + \Delta I) \Omega^2$. Разность $E_R - E'_R$ определяет добавочную энергию, которая выделяется при релаксации кон-

определяет добавочную энергию, которая выделяется при релаксации конфигурации к сферической форме, энергию деформации W. Итак,

$$W = W_0 \Omega^4, \tag{21}$$

где $W_0 = \frac{1}{4} \Delta I(\Omega_m)/\Omega_m^2$. Выражение (21) выведено из нерелятивистских соображений и, будучи примененным к нейтронным звездам, носит лишь характер оценки. Мы пользуемся им потому, что не располагаем корректным определением величины W в ОТО.

Энергия деформации W вместе с тепловой энергией U определяют в нашей модели запасы внутренней энергии нейтронной звезды. Уменьшением этих запасов компенсируются нейтринные потери и поддерживается тепловое электромагнитное излучение звезды, так что

$$\frac{d\bar{U}}{dt} + \frac{dW}{dt} = -L_{y} - L_{y}, \qquad (22)$$

где L, и L_7 — нейтринная и фотонная светимости звезды. Из расчета градиента температуры в поверхностных слоях нейтронных звезд выте-

кает, что благодаря высокой теплопроводности вырожденного электронного газа температура «выходит на плато» уже в слое, состоящем из Ae-фазы [14]. Поэтому в нейтронных звездах всюду, за исключением тонкого внешнего слоя, температура почти постоянна.

Нейтронные потери ядерного вещества в отсутствие сверхтекучести определяются, в основном, урка-процессом [2, 15]. Энергия, выделенная в ходе урка-процесса за 1 с в 1 см³ вещества с температурой T, пропорциональна T^8 для вещества без π -конденсата и T^6 для вещества, содержащего π -конденсат, причем при $T = 10^9$ K она во втором случае на пятьшесть порядков больше, чем в первом (заметим, однако, что согласно [16] различие нейтронных светимостей в этих двух случаях не столь существенно).

Из постоянства температуры во внутренней части нейтронной звезды следует

$$L_{\tau} = L_0 \begin{pmatrix} T^3 \\ T^s \end{pmatrix}, \tag{23}$$

где T — внутренняя температура звезды, а верхнее и нижнее выражения относятся соответственно к нейтронным звездам без π -конденсата и с π -конденсатом.

Для тепловой энергии нейтронной звезды имеем

$$\overline{U} = \overline{U}_0 T^2. \tag{24}$$

В проведенных нами для ряда конфигураций расчетах величин L, и U_o предполагается, что звезда является сферической и что

$$T(r) e^{v^{\circ}(r)/2} = \text{const}$$

во внутренней части звезды (под температурой T в этом случае следует понимать значение $T(\tau)$ на внутренней границе Ae-фазы); кроме того, приняты упрощающие предположения о химическом составе звездных недр. Мы определим также связь между эффективной температурой T_e (нли светимостью L_{γ}) и внутренней температурой T с учетом релятивистского характера электронного газа в Ae-фазе (см. также [17]), но без учета влияния магнитного поля на непрозрачность внешних слоев звезды.

Характерноє время выделения энергии W сравнительно мало. если этот процесс обусловлен, как мы предполагаем, вязкостью внутренних слоев звезды (короткие наблюдаемые времена релаксации после сбоев пульсаций для пульсаров в Крабе и Веле). В этом случае скорость выделения энергии деформации определяется скоростью, с которой замедляется вращение звезды. Если нейтронная звезда теряет энергию в основном посредством магнитодивольного излучения, то

$$Q = (2 at)^{-1/2}, \tag{25}$$

где значение *а* для радиопульсаров равно примерно 10^{-16} с. Для числовых оценок примем значение $a = 4,7 \cdot 10^{-16}$ с, полученное из (25) при подстановке в него наблюдаемых значений Ω и *t* для пульсара в Крабе. Отбросим второе слагаемое в правой части уравнения (22) и рассмотрим в отдельности случаи, когда основной вклад в левую часть вносит член $d\overline{U}/dt$ («эпоха выделения тепловой энергии») и когда преобладает член $d\overline{W}/dt$ («эпоха выделения энергии деформации»). Для нейтронных звезд без л-конденсата получим

$$T = \left(\frac{\overline{U}_0}{3L_0}\right)^{1/6} t^{-1/6} \quad \text{или} \quad \left(\frac{W_0}{2 a^2 L_0}\right)^{1/8} t^{-3/8}, \tag{26}$$

а для нейтронных звезд, содержащих л-конденсат,-

$$T = \left(\frac{\overline{U}_0}{2L_0}\right)^{1/4} t^{-1/4}$$
или $\left(\frac{W_0}{2a^2L_0}\right)^{1/6} t^{-1/2}$. (27)

В этих формулах первое выражение соответствует эпохе выделения тепловой энергии, а второе — эпохе выделения энергии деформации. В начале тепловой эволюции звезды имеет место эпоха выделения энергии деформации. Оценку продолжительности этой эпохи t_R получим приравниванием друг другу альтернативных выражений в правых частях соотношений (26) и (27). Для моделей 1, 2 и 3 табл. 1 получим $t_R = 300$, 250 и 240 лет, чему соответствуют эначения внутренней температуры $T_R = (6,2, 6,4 \text{ н} 6,9) \cdot 10^8 \text{ K}$; для моделей 2, 3 и 4 табл. 2 аналогичные числа есть: $t_R = 810$, 4700 и 9400 лет при $T_R = (1,4, 1,0 \text{ и} 0,9) \cdot 10^7 \text{ K}$. Из полученной нами зависимости T_e (T) следует, что для обоих классов моделей нейтринная светимость при температуре T_R на несколько порядков выше фотонной, так что пренебрежение величиной L_7 в (22) в течение всего времени t_R (а на самом деле в течение значительно большего времени) является законным.

На рис. З и 4 изображена температура в центре звезды как функция времени для моделей нейтронных звезд с $M \gtrsim 1 M_{\odot}$; на рис. З приведена эта зависимость для нейтронной звезды, не содержащей л-конденсат (модель 3 табл. 1), а на рис. 4 — для нейтронной звезды с л-конденсатом (модель 4 табл. 2). Сплошные линии получены интегрированием варианта уравнения (22) с опущенным слагаемым L_{γ} , а пунктиром изображена эволюция звезд с одними только тепловыми запасами энергии. Как видно из рисунков, выделение энергии W оказывает влияние на остывание нейтронных звезд в течение нескольких сотен или 10^4 лет в зависимости от гого, содержит ли звезда л-конденсат или нет. В случае нейтронной звезды с л-конденсатом, когда $t_R \sim 10^4$ лет, светимость в течение почти всего времени t_R мала и достигает 10^{34} эрг с⁻¹ (наблюдаемый верхний предел для пульсара в Крабе) уже через год после образования звезды.

Итак, выделение энергии W можно наблюдать лишь в течение короткого периода, который несколько дольше в случае отсутствия π-конденсата в веществе нейтронной звезды; но и тогда он меньше возраста пульсара в Крабе. При учете сверхтекучести вещества в недрах звезд роль энергии деформации увеличится, так как тепловая энергия в этом случае меньше. Если для оценок предположить, что вследствие сверхтекучести тепловая энергия и нейтринная светимость нейтронной звезды уменьшатся на два порядка, то значение времени t_R увеличится на порядок, т. е. станет больше возраста пульсара в Крабе.

Рис. 3.

Рис. 4.

Рис. 3. Охлаждение нейтронных звезд, не содержащих *π*-конденсат, с учетом выделения энергии деформации (сплошная линия) и с учетом одних лишь тепловых запасов (пунктир).

Рис: 4. Охлаждение нейтронных звезд, содержащих т:-конденсат. Обозначения те же, что и на рис. 3.

Авторы благодарны проф. Д. М. Седракяну и проф. Э. В. Чубаряну за полезные обсуждения.

Ереванский государственный

университет

Поступила 15. XI. 1980

ЛИТЕРАТУРА

1. A. Toor, F. D. Seward. Ap. J., 216, 560 (1977).

- 2. O. V. Maxwell. Ap. J., 231, 201 (1979).
- 3. O. V. Maxwell et al. Ap. J., 216, 77 (1977).
- 4. K. Brecher, A. Burrows. Ap. J., 236, 241 (1980).

5. J. B. Hartle. Ap. J., 150, 1005 (1967).

- 6. Д. М. Седракян, Э. В. Чубарян. Астрофизика, 4, 551 (1968).
- 7. J. B. Hartle. Astrophys. Space Sci., 24, 385 (1973).
- 8. Г. Г. Арутюнян, Д. М. Седракян, Э. В. Чубарян. Астрономический журнал, 18, 496 (1971).
- 9. М. О. Минасян. Ученые записки ЕГУ, 1, 63 (1980).
- Г. С. Саакян. Равновесные конфигурации вырожденных газовых масс, Изд. Наука, М., 1972.
- L. Sh. Grigorian, G. S. Sahakian. Abstracts of Contributed Papers of 9th Inter national Conference on General Relativity and Gravitation, 1980, p. 436.
- 12. J. B. Hartle. Ap. J., 161, 111 (1970).

13. Г. Г. Арутюнян и др. Астрофизика, 15, 497 (1979).

- 14. C. Tsuruta, A. G. W. Cameron. Can. J. Phys., 44, 1863 (1966).
- 15. J. N. Bahcall, R. A. Wolf. Phys. Rev., 140B, 1452 (1965).

Л. Ш. Григорян. Астрофизика (в печати).
 В. А. Урпин, Д. Г. Яковлев. Астрофизика, 15, 647 (1979).

ԳԵՐԽԻՏ ԿՈՆՖԻԳՈՒՐԱՑԻԱՆԵՐԻ ՊՏՈՒՅՏԸ ԱՆԿՑՈՒՆԱՑԻՆ ԱՐԱԳՈՒԹՅԱՆ ԵՐՐՈՐԴ ՄՈՏԱՎՈՐՈՒԹՅԱՄԲ ԵՎ ԴԵՖՈՐՄԱՑԻԱՅԻ ԷՆԵՐԳԻԱՆ

4. PULD4, U. 2. UPDUUSUD

Հաշվված են պտտվող նելարոնային աստղերի մի շարք մոդելների արտաքին գրավիտացիոն դաշտերի պարամետրերը Ω^3 մոտավորությամբ։ Որոշված է դեֆորմացիայի էներգիան ~ Ω^4 և դնամատված է նրա դերը իբրև նեյտրոնային աստղերի ներջին էներգիայի աղբյուր։

ROTATION OF SUPERDENSE STARS AS A THIRD-ORDER APPROXIMATION IN ANGULAR VELOCITY AND THE DEFORMATION ENERGY

V. BALEK, M. H. MINASSIAN

The parameters of rotating neutron stars governing their [external gravitation field in the Ω^3 approximation are calculated. The deformation of the order of energy $\sim \Omega^4$ is obtained and its significance as an internal energy source is discussed.