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1 Introduction

In order to study stability of some inverse problems, in a series of papers, S. Saitoh, M.
Yamamoto and the last author ([10, 11], 12]) derived reverse inequalities for convolution in

some weighted L, spaces by using the following reverse Holder’s inequality:

Proposition 1.1 ([14]; see also [{, pp. 125-126]) For two positive functions f and g
satisfying
<M < o0 (1.1)


http://www.flib.sci.am/eng/journal/Math/
mailto:ndvynhan@gmail.com
mailto:ducdinh2002@yahoo.com
mailto:vu@westga.edu

on the set X, and forp,q>1, pt +q¢ ' =1,
1
q

(/X fd,u)‘l’ (/X gdu) <A, (%) /)(figidﬂ, (1.2)

if the right hand side integral converges. Here

Then, by using Proposition the first two authors obtained the following
Proposition 1.2 ([3]) Let Fy and Fy be positive functions satisfying
1 1 1 1
0<my <Fi(z) < Mf <oo, 0<mb <Fy(z) <My <oo, ze€R"™ (1.3)

Then for any positive continuous functions py and ps on R™, we have the following reverse

weighted L,(p > 1)—norm inequality for convolution

| (Fuon) « Fooa)) o o)™

_pn [ 12
> 5 (5 ) Ve Vel

In [8, 3] we gave various applications of ((1.4]) from the viewpoint of stability in inverse

(1.4)

problems.

Later in [7], we introduced several iterated convolution type transformations. Using the
Holder’s inequalities we established weighted L,,p > 1, norm inequalities for these iterated
convolutions. In this paper, by using the reverse Holder’s inequalities we will derive reverse

type inequalities for the iterated convolutions.

2 Preliminaries

Throughout this paper, by € = (21, ...,x,), z; € R, j =1,2,...,n, we denote a vector in R".
In particular,
1=(1,1,...,1), 2=1(2,2,...,2), ... (2.1)

We shall write £ > y to denote z; > y;, 7 = 1,2, ...,n. Anologously one has to understand
x>y <y, Y.

We always assume that p, p; and p;,.(j = 1,2, ...,m; r = 1,2, ..., s)— the weight functions,
to be nonnegative, and 1 < p < oo. When we write A < B, we understand that if B is
finite, then A is also finite, and bounded above by B.

We shall denote some subsets of R™
RY(t) ={x:xcR",0<x <t} (2.2)
Ry ={x:zecR" t<x < oo}. (2.3)

Then, by using Proposition [1.1| we obtain the following lemma
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REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS 79

Lemma 2.1 Let §) be a measurable set in R™ and p be a positive function belonging to L,(£2).

For a positive function f satisfying
0<m!/? < f(x) < MY? < (2.4)

on the set Q, and for p,q>1, p'+q =1,

(f [f(w)]ﬁp@)dm)’l’ (f p(w)dm) <a,(3) [ @ (25)

Let D be a domain in R", F;(.): D - R, i=1,--- ,q, and ¢(.,.),%(.,.) : D x D — D.

Then, we introduce a convolution type integral, called the ¢p— convolution

Definition 2.2 ([7/) The ¢— convolution of Fy and F,, denoted by Fy , F5, is defined by

(Fi v, P = | F@Faliolé m) €. mlde, (2.6
when this integral exists. Here,

ea(Em)| = det (-o(Em) )

is the Jacobian of the transformation n — (., n).

Example 2.3 The following convolutions are particular cases of the p—convolution ([1],

2)):

e The Fourier convolution
Fy x5 Fy = / Fi(y)Fy(x —y)dy, = R" (2.7)
e The Laplace convolution

Fy xg Fy := / Fi(T)Fy(t —1)dT, teR). (2.8)
R ()

o The Mellin convolution

Fy sgp Fy := / Fi(z)Fy(t/x)z 'de, te€RT. (2.9)
n

Definition 2.4 ([7]) Let G;(.,.) : R* x R? — R. The Fourier-Laplace convolution of
G1(7,¢) and Go(1,€) is defined by

CreacCem= [ dr [ GroGE-rn-gic @)
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Remark 2.5 We observe that the Fourier-Laplace convolution is a special case of the ¢ -

convolution.

By Lemma 2.1} we have

Lemma 2.6 Let p; and py be two positive functions on D such that the convolution py x4 po

exists. For two positive functions Fy and Fy satisfying

1 1

O<m! <F, <M} <oo, j=1,2 (2.11)

on the set D, and for p > 1,

A ( oy ) [(Fipn) %, (Fape))(m)]

> [(p1 4 p2) (P ((FYp1) *p (F5p2))(m)

(2.12)

for allm € D.
. From the p— convolution and the ¥»— convolution, we get the following definition

Definition 2.7 ([7/) Under suitable hypotheses for the p— convolution Fy *, Fy and the 1)—
convolution Fy xy, Fy, the (¢ 4+ ¢)— convolution, denoted by Fy %,y F, is defined by

(F1 #p4y £2)(8) = /DFl(T) [F2(o(T, 8))ee (T, E)| + Fa (¢ (7, 8)) [the (7, §) [ dr. (2.13)

Example 2.8 The Fourier cosine convolution (see [13)])

P Ba) = <= [ R@IR@-+y) + P -yl (2.14)

is a special case of the (@ + 1)—convolution.

Then, we have

Lemma 2.9 Let p; and py be two positive functions on D such that the convolution p* 41y p2

exists. For two positive functions Fy and Fy satisfying

1 1

0<m? <F; <M} < oo (2.15)

on the set D, and for p > 1,

mimes

a3 (552 ) A (52) KCFip) s (Fap)

> [(p1 *prp p2) ()P ((FY 1) *pry (FSp2))(m)

(2.16)

for allm e D.
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REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS 81

Proof. Application of the reverse Holder’s inequality gives

Ay () IFaol6 M)l m)len( &) + Fa(w(€,m)pa(w (€ ) ol ]

> [F5(0(&,m))p2(0(&m)len(&m)| + FF(0(&,m))p2( (&, M) 1¢bn (&, )]
X [pa(p(&.m)) (&) + pa(Wb(&. ) (& )] 7

Therefore,

A5 (322 ) (52 ) (B 5o (Fap) )]

>y, (552) [ A@me

X [FE(o(&.1m)) pa(0(&, 1)) | on (€, )| + FL((E, 1)) p2((€,m)) e (€, m)[]7
% [p2((&, 1)) 0n (&) + po(b(&, )| (&, )] dE,
which is, by Lemma [2.1],

Sl

p—1

> [(pr *orw p2) (M) 7 [((FYp1) #0100 (F5'p2)) ()] 7.

‘@\'—‘

Thus, the proof is complete. [

Definition 2.10 ([7]) For the o— convolution, define the p— convolution product [T", *,F}
by

m—1

H o F

H*chj(S )=

Jj=1

En(&n)- (2.17)

3 Reverse weighted L, inequalities in the iterated con-

volutions

Our main inequality is the following:

Theorem 3.1 Let functions p;, j = 1,2,...,m, be positive on D such that the convolution

H;'n:1 x,p0;. For m positive functions Fj satisfying
1 1
0<m; <F; <M/ <oo (3.1)

on the set D(j = 1,2,...,m), and forp > 1,

(H *o (Fj05)( > (H *@pj(gm)) p

j= 1

Ly(D) (3.2)
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Inequality (3.2)) and others should be understood in the sense that if the left hand side is
finite, then so is the right hand side, and in this case the inequality holds.

Corollary 3.2 For positive functions p;,(j =1,2,..,m; r =1,2,...,s) on D such that the

convolution H;n:l xgpjr exists and for positive functions Fj, satisfying

1
0<mf, <Fj, <M/ <oo (3.3)

on the set D(j =1,2,....m; r=1,2,...;s), and for p > 1, we have
s m s m %_1 P
(zn* Byt ) ( H*W>

r=1 j=1 r=1 j=1

Ly(D) (3.4)

=t () S AT (1152 ) ED0s
r=1 =2
where

m m
My = min H My ¢, Moo= max H M;, ».
T T
j=1 j=1

Proof of Theorem [3.1] We first proof the following inequality

( *o(E505)( ) (H *ij(ﬁm)>
H{ <H ]\42)} xo(F7p;) (&), &n €D.

We use induction on m. When m = 2, the inequality (3.5]) is reduced to Lemma . Now
suppose (3.5 holds for some integer m > 2. We claim that it also holds for m + 1. For all

€m+17 put

s

(3.5)

s

p—1

fﬁm+1 (gm) = {H*ij(gm)pm+1((tp(£m7gm—i—l))(pﬁmJﬂ (£m7£m+1)}

j=1

and

B =

s

g§m+1 = { *50 Fppj pm+1( (£m7 €m+1))<p€m+1 (€m7 gm-ﬁ-l)}
j=1

X Fm+1 (£m7£m+l))'

82



REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS

By induction hypothesis, we arrive at

I1 {Az,q ( %) } T #(Fip)Emir)

= H {A” ( )} (H *,(Fjpj > (Fnt1Pm+1) (Emi)

/ feo (6006, (E,)dE,

The condition (3.1)) implies

m+1 m+1
Hmj_fm“( H £, €D.
= 1 £m+1

Hence, one can apply the reverse Hélder inequality to fe, ., (§,,) and ge ., (§,,) to obtain

m—+1 p
A NTLEN | e (€)e, (E0)dE,, }
i 3) e

Jj=

> { / [fgmﬂ@,n)]qum}pl [

= {H *cppj(ﬁmﬂ)} H *o(F7 i) (Emst)

j=1 7=1
and so the assertion follows.

Now, by taking integration of both sides of (3.5)) with respect to &,, on D we obtain the

inequality

/JJ(H*w(E‘Pj)(&M) (H*wﬂj(ﬁm)) €.,

Jj=1 j=1
=11 A <:%> } /D jHl*w(F;’pj)(emmsm.

Here we have, by definition,

/D [T (Eei)E,)de,

- | ., /D [_ ) € )]

X Ffr)z(gp(gm—l? £m))pm(90(€m—17 €m>> |<10§m (Sm—l? €m> |d£m—17
which is, by the Fubini’s theorem and the change of variables x,, = ©(&,,_1,&,,.),

= /D [ﬂ*w(wf’m)(ﬁm_l)] dg,,, /D | Fp (1) P (1 ) A

j=1
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Therefore,

/ C( ol ) (ﬁ )chsm

- . (3.6)
> H AT < ) } / Fp z)p;(x
i=2
Raising both sides of the inequality (3.6]) to power 1/p yields the inequality (3.1]). O
Proof of Corollary For every €, € D, take
m m —1/q
(H s (Fjrpjn)( )) (H *sopj,r(gm)>
j=1 j=1
and
m 1/q
br - <H *gopj,r(gm)) , I''= 17 2a S
j=1
The condition ([3.3) implies
SH ]'I‘Sb_Z;SHMjTSMO7 T—1,2, ) S
j=1 !
Hence, we obtain
s s p—1 m s p
0
(o) () < () (o)
r=1 r=1 r=1
or, equivalent
s m p m 1—=p s m p—1
Z <H *W(FJ,TPJ,T)('Sm)> (H *sopj,r<€m)> {ZH wPir (& )}
r=1 \j=1 j=1 r=1j=1
s m p
L
< qu (_> (Z H *W(FJ rPj r)(ﬁm))
0 r=1 j=1
Therefore,
s m p s m l—=p
( | EXeaT r)(ﬁm)> (Z JIEXZ r(ﬁm)>
r=1j=1 r=1 j=1
. . b 1 (3.7)
—p [ o
> (5 X (H *@@-,ij,r)(sm)) (H e >>
r=1 \j=1 j=1
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Now, by taking integration of both sides of (3.7) with respect to &,, on D we obtain

[ (ST )(znw o) .

r=1 j=1 r=1 j=1
s m m 1-p
—p @ ‘
A <M0) /D TZ:; (jlj[l *o(Fjrpir) ) <jli[1 *cppj,r(ém)> d§,,
s m m 1-p
- A;Iq) <%Z) ; /[\) (]]1 *90 Js Tpﬂ T > (]Hl *@pjﬂ'(gm)) dém?

which is, by Theorem [3.1],
- Mo s m o
gz () o { T (T ) 100
: ey

that completes the proof of (3.4). O

;From Theorem [3.1], we obtain an inequality for the iterated Fourier-Laplace convolution

here.

Corollary 3.3 Let Fj(x,t), j =1,2,...,m, be positive functions satisfying

1

1 1
0<m; <F; <M} <oo (3.8)

on the set R" x Ry. Then for any positive functions p; on R" x Ry such that there exists

H;”Zl x5 ¢, and for the iterated Fourier Laplace convolution H;n:l x5 ¢, we have the inequality

(H *S,S(Fj/)j)> (H *&spa) p

Jj=1 Jj=1

Lp(R™xRy) (3.9)

; —(n+1) ,,
>H{ ( )} TT1E e

j=1
Remark 3.4 In formula[3.9, when m =2 replacing ps by 1, and Fy(x —&,t — 1) by G(x —
&,t—7), and integrating with respect to x from a to b and respect to t from 0 to T(> 0), we

arrive at the following inequality

/ / fo Joon F( 7)G (:B—S,t—7‘)d§d7‘>pda:
(U S L. Td5d7> h (3.10)

z{qu(M ("H/df/angT £Td§/TTdt bng(wt)

if positive functions p, F and G satisfy

0<mr < FEDG(x—&1—17) < Mr < 0o (3.11)
for all (z,t) € [a,b] x [0,T], (¢&,7) € R x [0, T).
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Theorem 3.5 Letp > 1, 0 < a < Ty, 0<T;(i =2,....m), and F; € Loo(0,T1 +--- +
T,)(j=1,2..m), satisfy

0<F<M<oo, 0<t<) T; (3.12)
Then

(1-p) -
M B sy [T 1 Ellp01,)

j=2

T1+"'+T7n tnl tg m 1/p
< / dtm/ dtm_l---/ Fit) [ Fits — tim)dt |

o1

(3.13)

In particular; for o = 0, we have

(1-p) ¥ TotetTm 20 v
P on < | [ [[+eB 0] . (3.14)
=1 0

J=1

Proof. Since 0 < Fj(j =1,2,....,m) < M for 0 <t <37 T;, we have

tm to m
/ dtm_1-~-/ FP(ty) [] FP(t; — ty—1)dty

tm to m m
=/ dtm—l"'/ FEt) [ FP i — to) Fu(t) [ it — ty-0)dty

a o =2 =2

tm ta e
ng(pl)/ dtml"‘/ Fi(ty) HFJ (t; —t;1)dt,.
Jj=2

(a7 «

Hence

T1++T'm tm to m
/ dtm/ dtm_l---/ FP(ty) [ ] FP(t; — tj-1)dty

« (a2 o

T+ +Tm tm t2 i (315)
< Mm(pl)/ dtm/ dtp,—1--- Fi(t) HFJ —tj)dty.

« « (o7

On the other hand, let
1 for >0

0 for x<0,

tm—l to m—1
G(tmfl) = / dtm72 ©e / Fp j ] 1 dtly

and let

J
]:2
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we have

« (a2 e

T1+"'+T'm tm to m
/ dtm/ dtm_l---/ H (t; —t;_1)dt,
j=2

/ Gty ) FP (b — ty_1)dt,_1dt,,

Tyt +Tm  Tit+Tm
G(tm—1)FP (ty — tm_1)0(t, — tm_1)dt,,_1dt,,,

m

« «

which is, by Fubini’s theorem and the change of variables @ = ¢t,, — t,,_1,

Ti++Tm Ti++Tm—tm-1
_/ (/ F@(m)dm) G(tm—1)dtn,—1
o 0

Ti4~+Tm-1 Ti+A+Tm—tm—1
/ (/ F@(m)dm) G(tp—1)dt, 1
o 0
T1++Tm—1 T
(/ Ff;(w)dw) G(tm—1)dt, 1
0

a
Ti++Tm-1

v

v

T
Gl 1)t / FP ()dz,
0

(07

and so,

T1++T'm tm to m
/ dtm/ dtm_l---/ FP(ty) [T FP (5 — ty-1)dty

« (a2 (o7

T, m T
> / Ff(w)de/ P (x)dx
a j=2 0
Combining with (3.15)), we have the desired inequality (3.13). O

We next obtain the inequalities for the (¢ + 1)—convolution.

Theorem 3.6 Let functions p;, j = 1,2,...,m, be positive on D such that the convolution

H;”Zl *orppj €xists. For positive functions F satisfying

1 1
0<m) <F; <M} <oo (3.16)

on the set D, j=1,2,....m, and for p > 1,

(H *so+w(Fij)(€m)> (H *¢+wﬂj(€m)> p

i Ly(D) (3.17)

{A;q (H%)}HAM <m> TT1 o
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Proof. From Lemma [2.9 and by induction on m, we have

Therefore,

i=2 =17/ ) j=2 j=1

m u n Z m; . m -

2 IH{AM” (HMJ)}H b (2 H/F;’(w)p](a:)da:
1=2 j=1 J j= J j=1 D

The Theorem is thus proved. [
;From Theorem [3.6] we have the following inequalities:

Corollary 3.7 Let Fj(j =1,2,...,m) be positive functions satisfying
1 1

0<m <F; <M <oo (3.18)

on the set R%,. Then for any positive continuous functions p; on R, and for the iterated

Fourier cosin convolution H;n:1 x5z, we have the inequality

(H *sc(Fij)> (H *&cﬂj) p

J=1 J=1

Ly(R}) (3.19)

> [ 2] ﬁ{A (H )}HAM (m) [T1 0k

j=1

Corollary 3.8 Let functions p;, (j =1,2,....,m; r =1,2,...;s) be positive on D such that

the convolution H;n:1 ¥ P €xists. For some positive functions Fj, satisfying

1 1
0<mj, <F;, <M} <o0 (3.20)
on the set D (j = womy r=1,2,....8), and forp > 1,
1_q(IP
S m P
(znw o) (ST
r=1 j=1 r=1 j=1 Ly(D)
m—1 g—p [ 10 3.21
> omTlAP <ﬁo) (3.21)

XZ{HAp,q (Tj“)HARZP (H >HH Lp(DP]r }7
r=1 {j=2 Irs =2 j=1 =
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where

my = mrin {ﬁmj,r} , My= max {ﬁ Mj,r} )
j=1

4 Applications

4.1 The Bernoulli-Euler Beam Equation

We consider the vertical deflection u(z) of an infinite beam on an elastic foundation under
the action of a prescribed vertical load W (z). The deflection u(x) satisfies the ordinary

differential equation
4

d*u
EI@—F%U:W(%), —00 < 7 < 00, (4.1)

where ET is the flexural rigidity and & is the foundation modulus of the beam. We find
the solution assuming that W (x) has a compact support and u, u', u”, u"” all tend to zero as
|z| — oo. Put

4_ K _ W(=)
By using the Fourier transform, we obtain the solution ([2, pp. 63-64])
1 o0
ue) = 50 | FOOG( — e, (4.2)

where

G(&) = exp (—%M) sin (\a/_% + %) : (4.3)
Let b,c € R and

2 3v2
x € [=bb], £€[—c, —Z—;W<—b—c<b+c<7r%.

0 <armin (1120 gy (=0 7Y,

Clearly,

Since

we see that the condition
0 <ms < F(E)G(x — &) < M, (4.4)
holds if

0<éexp{a(b—\/gc)}migF(S)gMiexp{a“i/_;'}. (4.5)

Thus, for —b < d < e < b, the formal solution u(x) satisfies the inequality

/de uP(z)dz > (e — d)a exp {_%} {Ap,q <%) },p

x ( /d e p(x)d:c)p_l /d " P2 pla)da.

89

(4.6)
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4.2 The Helmholtz Equation
We consider the Dirichlet problem for the Helmholtz equation in a half space of R3, i.e. the

determination of the bounded solution of
AgU(iIZ’,y,t) + ku('xa y7t) = 07 (%, y) € RQ, te R+7 ke R+7 (47>
under the boundary value condition
u(z,y,0) = Fz,y)p(z,y), Flr,y)p(z,y) € Li(R?) (4.8)
Its solution has the form ([Il, pp. 75-76])
2” (12 + !5—sv!2+|7—y| )? (4.9)
x Ks (k:\/t2 TIE—aP+ | — y|2) dedr
where K, () denotes the McDonald function and for v = 2 (see [9, Supp. 10])
s 1\ _,
K3 (x) = % (1—1—;) e
(4.10)

,7)G(§ — x,y — 7)dEdr,

We rewrite (4.9)) as
/..

u(z,y,t)
k /t2+§2+7'2

where
14 kr/72 2 2
Gl 7) = + +¢ -I—Te_
(t? + &2+ 72)
Let ay, a9, b1, bo, ¢y, o, dq, dy be some real numbers and
x € [ar,az], &€ [bi,ba], y € e, € [di,dy).
Denote
a =max{|a; — b, |ar — bl |ag — b1, [ag — bal},
B =max{|c; — dil,|c1 — dal, |ca — di], ez — dal }.
We have oy )
0< i ge FVERSHE < Qe -2y — 1) < .
(t+a? + 32 %
Thus .
/ ’ dy/ ’ GP(x,y)dx > (ca —c1)(ag — al)(1p+ kt)pe—pk\/t2+a2+ﬂ2'
c1—T a1 —¢§ (t—|-042 +62)T
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REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS

Hence, for a function F' satisfying

2 2\ 2
0< +1O‘+Zf ) ERER < (e ) < Mt

N|©

(4.11)

and for a positive continuous function p on [by, by| X [d1, ds], we obtain

/ dy/ u(z,y,1)

=l male gy, Zfitf TG an

< ( /d d dr /b fz o€, T)dé)p_l /d d dr /b 1b2 FP (€, 7)plE, 7)d.

4.3 The Cauchy Problem for the Inhomogeneous Heat Equation

The equation of heat conduction with sources is given by
w(t, ) — FAzu(t,x) = F(t,x)p(t,x), (t,x) € Ry x R", (4.13)
where Fp € Ly for every t € R, , under the initial value condition
w(0,x) = 0. (4.14)

Its solution has the form (see [I, pp. 58-59])

ult,@) = m/ / T’_g)gm >exp{ 4'52(;?';}(15. (4.15)

Take ,
_ 1 4
G(E? T) - Tn/2 €xXp {_4C2T} .
Let
£€—a,a]l, &c[-bb|, te[lh,Tz], T)>0.
Since

1 la + bJ? _ 1 |z — & _ 1
exp < — exp{ ———— S
TQ"/2 p 4¢2T, (t —71)n/2 p 4cr Tln/2’
we see that the condition
0<mr < F(€&,7)G(x — &t —7) < M» (4.16)

holds if

0< T2/2exp{|4 2T| }mp < F(¢&,7) < MyTM?, (4.17)
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Thus, for —a < d, e < a, the inequality (3.10) yields

To e
/ dt/ uP(x,t)dx
T d
1
>

(e —d) la + b|? m ) —(nt+Dp
~ (4mc?)ne/2 TQ"P/2 e 42Ty {Ap’q (M)} (4.18)
T e p—1 T e
X (/ dt/ p(:c,t)d:v) / (T, —t)dt | FP(z,t)p(x,t)dex,
T d T d

where p is a positive continuous function on [d, e] x [T, 15|, and F satisfies (4.17]).
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