К РАСЧЕТУ И ОПТИМИЗАЦИИ ПАРАМЕТРОВ РПИ-ДЕТЕКТОРА

А. Т. АВУНДЖЯН, Л. Г. АКОПЯН, К. Г. АНТОНЯН, А. Г. ДАДАЛЯН, С. П. КАЗАРЯН, С. А. КАНКАНЯН, М. С. КОЧАРЯН, А. Г. ОГАНЕСЯН

Приводится уточненное выражение для учета эффекта плотности в ионизационных потерях заряженных частиц. Показано, что с использованием этого выражения повышается точность моделирования прохождения частиц через РПИ-детекторы методом Монте-Карло. Описан метод оптимизации числа секций РПИ-детекторов применительно к конкретной физической задаче.

В работе [1] был описан алгоритм моделирования прохождения частиц через РПИ-детектор, а также были приведены некоторые результаты расчетов применительно к конфигурации экспериментальной усгановки «Пион», предназначенной для идентификации адронов сверхвысоких энергий. В настоящей работе приводятся результаты расчетов, выполненных с помощью усовершенствованного алгоритма и позволяющих оптимизировать число секций РПИ-детектора для конкретной физической задачи.

Известно, что в РПИ-детекторах, основанных на методе энерговыделения, одновременно регистрируются как ионизационные потери, так и кванты переходного излучения, образованные частицей в раднаторе. Для моделирования этих процессов необходимо точное знание энергетических зависимостей как интенсивности переходного излучения, так и среднего значения ионизационных потерь в тонких поглотителях. Обычно для описания интенсивности переходного излучения пользуются формулами. приведенными, например, в работах [2, 3], а для описания средних монизационных потерь пользуются известным выражением Штернхеймера [4]. Однако, как следует из экспериментов, выполненных при больших значениях лоренц-фактора, наблюдается значительное расхождение между теоретическим предсказанием и измеренными значениями средних ионизационных потерь. Превышение расчетов над экспериментом в области плато Ферми, достигающее 30-40%, обусловлено неточным учетом эффекта плотности в ионизационных потерях. Следовательно, использование в расчетах формул работы [4] приводит к искусственному завышению разрешающей способности моделируемого детектора.

Недавно Аллисоном и др. [5, 6] были проделаны тщательные измерения ионизационных потерь частиц в различных газах в широком диапазоне лоренц-фактора. Воспользовавшись их данными, мы эмпирически получили уточненные значения коэффициентов, входящих в формулу Штернхеймера, для газов, широко используемых в многонитяных пропорциональных камерах. Полученное нами выражение, описывающее поправку на эффект плотности в ионизационных потерях, имеет вид

 $\delta = 0$ при $\gamma \ll \gamma_{\min}$,

 $\delta = 2 \ln \gamma + C + a (2 \ln \gamma)^m$ при $\gamma_{\min} < \gamma \leq \gamma_{\max};$

значения параметров C, a, m, γ_{\min} и γ_{\max} при нормальных условиях приведены в таблице. Для других значений давления и температуры указанные параметры пересчитываются методом, описанным в работах [4]. При $\gamma > \gamma_{\max}$ величина ионизационных потерь принимается равной значению, соответствующему γ_{\max} .

Takauna

the second second second second				1 uosiagu		
Газ	-C ·	a	— <i>m</i>	γ _{max}	γ _{min}	
He Ve V2 17 Cr Cr CH4 CO2 H4 CO2 H43	10,379 10,905 9,886 12,699 14,610 61,851 9,440 13,490 10,456	428,031 130,987 272,813 59,740 45,956 70,344 171,442 48,201 153,818	2,425 1,647 2,184 1,123 0,878 0,1127 2,0630 1,021 1,902	584 1085 3166 946 1274 1473 582 696 1475	44,6 45,1 41,3 37,5 35,9 35,9 30,4 31,1 34,4	

С помощью алгоритма, описанного в работе [1], с учетом вышесказанного нами были смоделированы ионизационные потери для условий эксперимента [5, 6]. На рис. 1*a*, б приведены экспериментальные и расчетные распределения энерговыделений пионов и протонов с импульсами 25 ГэВ/с ($\gamma_{\pi} \approx 175$, $\gamma_{p} \approx 25$) в аргоне с толщиной 1,5 см при нормальных значениях давления и температуры. Видно, что при обоих значениях лоренц-фактора без каких-либо нормировочных или поправочных коэффициентов совпадают-как вероятные значения, так и форма распределений ионизационных потерь. Было также проведено сопоставление расчетных распределений с измеренными нами ионизационными потерями космических мюонов с импульсами выше 0,1 ГэВ/с в пропорциональной камере с количеством *Ar* 4,16·10⁻³ г/см². В расчетах использовались спектральное и угловое распределения мюонов, приведенные в [7]. Результаты расчетов и измерений, приведенные на рис. 1*в*, находятся в хорошем согласии.

Как следует из вышеприведенных сравнений, предложенное нами эмпирическое выражение для учета эффекта плотности в ионизационных потерях и алгоритм моделирования последних позволяют с хорошей степенью точности рассчитать ожидаемые распределения энерговыделений за счет ионизационных потерь. Это дало возможность с бо́льшей точностью смоделировать прохождение частиц через РПИ-детектор, когда в пропорциональной камере к ионизационным потерям добавляется энерговыделение за счет поглощения квантов переходного излучения. Для проверки этого нами были проведены расчеты для распределения суммарного энерговыделения электронов с энергией 3 ГэВ в пропорциональной каме-

199

ре толщиной 1,5 см, наполненной смесью 93% Ar + 7% CH, при нормальных условиях, расположенной за радиатором излучения, состоящим из 100 слоев майлара толщиной 125 мкм и с воздушным промежутком в

Рис. 1. Экспериментальные и расчетные распределения энерговыделений а) для пионов с импульсами 25 ГэВ/с в аргоне с толщиной 1,5 см; б) то же для протонов; в) для мюонов с импульсами выше 0,1 ГэВ/с в смеси 90% Ar + 10% С₄H₂ при давлении 0,7 атм и толщине камеры 4 см.

750 мкм, что соответствует условиям эксперимента [8]. На рис. 2 приведены результаты эксперимента [8] и наши расчеты, нормированные к одинаковому числу событий. Как видно, между ними действительно наблюдается хорошее согласие.

В экспериментах с космическими лучами при сверхвысоких энергиях, когда поток регистрируемых частиц весьма мал, важной характеристикой для набора соответствующего статистического материала является геометрический фактор установки

$$\Gamma\approx\frac{S^2}{H^2},$$

200

где S и H — соответственно площадь и высота установки. Очевидно, что в установках, включающих в себе РПИ-детекторы, с увеличением числа секций последних улучшается достоверность идентификации частиц, но при этом резко уменьшается геометрический фактор из-за увеличения H(S = const). Настоящий алгоритм позволяет при требуемой достоверности идентификации частиц найти оптимальное число секций РПИ-детек-

Рис. 2. Экспериментальное и расчетное распределения энерговыделения электронов с энергией 3 ГэВ в РПИ-детекторе. Рис. 3. Зависимость эффективности регистрации пионов (при коэффициен-

те режекции протонов $\Delta_p \approx 10\%$) и параметра ε_{π}/H^2 от числа секций в РПИ-детекторе: 1 и $X - E_{\pi, p} = 500$ ГэВ; 2 и $\bullet - E_{\pi, p} = 1000$ ГэВ; З и $\circ - E_{\pi, p} = 1500$ ГэВ.

тора, при котором при одинаковой длительности экспозиции обеспечивается максимальный статистический материал. В частности, такая задача была решена для экспериментальной установки «Пион» [9], предназначенной для измерения потоков π , p и n, а также сечений их взаимодействия с различными ядрами. Оптимизация заключалась в нахождении максимума параметра (ε_{π}/H^2) $\Delta_p = \text{const}$, где $\varepsilon_{\pi} -$ доля частиц, идентифицированных как пионы, с примесью протонов Δ_p . Очевидно, что число полезных событий пропорционально ε_{π}/H^2 , однако при условии $\Delta_p = \text{const}$ с увеличением числа секций ε_{π} стремится к единице, а H растет.

На рис. З для трех значений энергий адронов приведены зависимости ε_{π} и ε_{π}/H^2 от числа секций РПИ-детектора при $\Delta_p = 10\%$; здесь H высота всей установки, включая ионизационный калориметр. Предполагалось также, что в потоке космических адронов число пионов и протонов одинаково. Как видно из рис. З, оптимальное число секций в условиях эксперимента «Пион» составляет 4÷5.

Таким образом, разработанный алгоритм позволяет с хорошей точностью моделировать прохождение частиц через РПИ-детекторы, а также, исходя из условий конкретного эксперимента, оптимизировать параВ заключение авторы выражают благодарность А. Ц. Аматуни, Г. А. Вартапетяну, Г. М. Гарибяну, С. Г. Матиняну, В. В. Авакяну, Л. С. Багдасаряну и Э. А. Мамиджаняну за полезные обсуждения и дискуссии.

Ереванский физический институт

Поступила 25.ХП. 1979

ЛИТЕРАТУРА

- 1. В. В. Авакян и др. Изв. АН АрмССР, Физика, 13, 172 (1978).
- 2. Г. М. Гарибян. Препринт ЕФИ-ТФ-4 (70), 1970.
- 3. М. Л. Тер-Микаелян. Влияние среды на электромагнитные процессы при высоких энергиях, Ереван, 1969.
- R. M. Sternheimer, R. F. Peirls. Phys. Rev., B3, 3581 (1971); Phys. Rev., 88, 851 (1952); 91, 256 (1953); 103, 511 (1955); 145. 247 (1966); 164, 349 (1967).
- 5. I. M. Cobb, W. W. M. Allison, T. N. Bunch. NIM, 133, 315 (1976).
- 6. W. W. M. Allison et al. NIM, 133, 325 (1976).
- 7. С. Хаякава. Физика космических лучей, ч. І. М., 1973.
- 8. F. Harris et al. NIM, 107, 413 (1973).
- 9. В. В. Авакян и др. Изв. АН СССР, сер. физ., 40, 1058 (1976).

ՌԵՆՏԳԵՆՅԱՆ ԱՆՑՈՒՄԱՑԻՆ ՃԱՌԱԳԱՑԹՄԱՆ ԳԵՏԵԿՏՈՐՆԵՐԻ ՊԱՐԱՄԵՏՐԵՐԻ ՕՊՏԻՄԻՉԱՑՄԱՆ ԵՎ ՀԱՇՎԱՐԿԻ ՎԵՐԱԲԵՐՅԱԼ

U. S. 2U4ΛΡЪΣΞΟՆ, Ι. Գ. 2U4ΛΡΞUՆ, Կ. Գ. UՆSՈՆΞUՆ, U. Գ. ԳԱԳԱԼΞUՆ, U. Պ. QUQUPBUՆ, U. U. PULPUՆՅUՆ, U. U. PAQUPSUՆ, U. 2. 2A42UՆՆԻՍΞUՆ

Spilwė į įhgywijapijwė մասնիկների կոնիզացիոն կորուստներում խտության էֆեկտի Չաշվարկման մշգրտված բանաձևը։ Յույց է տրված, որ այդ բանաձևի կիրառման դեպքում Մոնտե-Կառլոյի մեթեողով ռենտգենյան անցումային ճառագայթնան (ՌԱՃ) դետեկտորների միջով մասնիկների անցման մոդելավորման ճշգրտությունը մեծանում է։ Սկարագրված է ՌԱՃ-դետեկտորների սեկցիաների ղանակի օպտիմիզացման մեթեոգը տվյալ ֆիզիկական խնդրի դեպրում։

TO THE CALCULATION AND OPTIMIZATION OF XTR-DETECTOR PARAMETERS

A. T. AVUNDZYAN, L. G. AKOPYAN, K. G. ANTONYAN, A. G. DADALYAN, S. P. KAZARYAN, S. A. KANKANYAN, M. S. KOCHARYAN, A. G. OGANESYAN

A corrected expression for the consideration of density effect in ionization losses of charged particles is given. It was shown, that the utilization of this expression increased the accuracy of Monte-Carlo simulation of a particle passage through the XTR-detectors. The procedure for the optimization of the number of XTR-detector sections for a specific problem was described.