АННИГИЛЯЦИЯ ПОЗИТРОНОВ В ОБЛАСТИ *р-п-*ПЕРЕХОДА В SI

А. Г. ЗАХАРЯНЦ, А. Г. МАЛОЯН, Е. П. ПРОКОПЬЕВ

Измерены кривые угловой корреляции аннигиляционных квантов от кремниевого полупроводника *p*-*n*-типа. В образце без приложения электрического поля и в образце, подвергшемуся термическому отжигу, обнаружена узкая компонента полушириной 5 мрад и интенсивностью $\sim 7\%$. В случаз приложения к образцу электрического напряжения в 2B в прямом и обратном направлениях интенсивность узкой компоненты убывает до 2,6%, а ее полуширина — до 3,5 мрад. Объяснение полученных данных дается в рам ках модели локализованного атома *Ps* в области *p*-*n*-перехода.

Аннигиляция позитронов в кремниевых полупроводниках изучалась во многих теоретических и экспериментальных работах (см., например, [1]). Интерес к этому объекту объясняется малостью атомного остова и полностью заполненной валентной зоной, что существенно упрощает теоретическую интерпретацию полученных результатов. Кривые угловой корреляции в поликристаллическом кремнии имеют форму перевернутой параболы, что свидетельствует о том, что аннигиляция позитронов происходит главным образом на «почти свободных» электронах валентной зоны и зоны проводимости.

Временные позитронные спектры в Si изучались в работах [2, 3]. В статье Фабри и др. [2] исследовался временной спектр аннигиляции в полупроводниках p- и n- типа, а также в Si барьерном детекторе, к которому было приложено напряжение в 400 B. В полупроводниках как v-, так и n-типа была обнаружена сравнительно долгоживущая компонента со временем жизни $\tau_2 = (1,2 \pm 0,1) \ 10^{-9}$ сек и с интенсивностью $I_2 =$ $= 2,6 \pm 0,5$ %. Авторы [2] приписали присутствие долгоживущей компоненты «образованию связанного состояния между позитронами и электронами, возбуждаемыми в зоне проводимости самим позитроном». В рамках этого предположения кажется естественным отсутствие долгоживущей компоненты в Si барьерном детекторе, поскольку электрическое поле быстро убирает подвижные заряды. В работе Берко и Вайсберга [3] во временных спектрах аннигиляции как в собственных, так и сильно легированных полупроводниках долгоживущая компонента обнаружена не была.

В последнее время появились работы [4—7], в которых доказывается наличие позитрониевых состояний в собственных и умеренно легированных полупроводниках, причем в работе [7] показано, что эти позитрониевые состояния, по-видимому, в основном находятся в парасостояниях вследствие высокой орто-пара-конверсии орто-*Ps* на свободных носителях. В сильно легированных полупроводниках существование *Ps* сомнительно [1].

В настоящей работе с целью поиска связанных состояний системы электрон-позитрон *Ps* в кремниевом *p-n*-переходе проведено изучение

414

углового распределения аннигиляционных ү-квантов процесса двухфотонной аннигиляции.

Спектрометр для измерения углового распределения аннигиляционных у-квантов, работающий в режиме «экранированного эмиттера», описан в работе [8]. Источником позитронов служил высокотемпературный препарат ²²Na с активностью 3 мкюри. Высота приемных щелей дегекторов составляла 1 мм, расстояние от образца до детекторов — 1 м. Шаг измерений составлял 10^{-3} рад, а точность установки каждой точки — 0,1 мрад.

В качестве исследуемого образца служил кремниевый полупроводник р-п-типа (активный элемент от промышленного диода марки В-800, рассчитанный на выпоямление тока до 800 А) с толщиной 0,3 мм, напесенный на вольфрамовый диск диаметром 40 мм и толщиной 1,5 мм. Слой р-п-типа примыкал к вольфрамовой подложке. Результаты спектрального эмиссионного анализа показали, что содержание Al в p-слое Si составляет 0,1 ат. %, а содержание Р в п-слое Si — 0,04 ат. %. На основе вычислений распределения остановившихся позитронов от ²²Na по глубине различных поглотителей, выполненных в [9], было оценено, что в слое Si с толшиной 0,3 мм остановится и проаннигилирует около 70% всех вошедших в образец позитронов. Из остальных 30% позитронов, достигших вольфрамовой подложки, около 30-35%, согласно [9], отразятся и снова возвратятся в слой Si. Вероятность того, что аннигиляционные у-кванты сумеют пройти в вольфрамовой подложке расстояние, равное диаметру образца, и, достигнув детекторов, внести вклад в счет совпадений, как показали расчеты, не превышает 0,1%. Всего, таким образом, вклад позитронов, остановившихся в вольфраме, в суммарное число совпадений от образца не превышает 0,02%, и мы можем принять, что снятые нами кривые угловой корреляции аннигиляционных у-квантов относятся к Si. Действительно. измеренные кривые не имеют характерного «завала» в области больших отрицательных углов, как это следовало ожидать в случае существенного вклада от вольфрамовой подложки, т. е. наши кривые симметричны.

Перед началом основных измерений была снята кривая угловой корреляции аннигиляционных у-квантов от монокристалла Si с меньшей концентрацией примесей. Был вырезан диск диаметром 35 мм и толщиной 2 мм в плоскости, перпендикулярной к оси роста монокристалла. Кривая, измеренная с большой статистической точностью, по форме линии и по полуширине (9,8 \pm 0,1 мрад) хорошо совпадает с результатами ранее опубликованных исследований [1]. В дальнейшем эта кривая была принята за основу и вписывалась во все последующие кривые, полученные от исследуемого образца.

На рис. 1а представлена кривая угловой корреляции аннигиляционных γ -квантов от образца *p*-*n*-типа без приложения к нему электрического поля. На всех рисунках сплошной линией изображена кривая для «чистого» Si, приведенная к одной и той же высоте. Во всех сериях измерений в околовершинных точках набиралось до 5 \cdot 10³ отсчетов совпадений. Темные точки на рис. 1а соответствуют измерениям на образце Si *p*-*n*-типа в отсутствие электрического поля. На рис. 1b светлыми кружками изображены результаты измерений на том же образце после 10-часового отжига при температуре 1000°С, когда образец из-за термодиффузии потерял свойства резкого p-n-перехода (а следовательно, нарушились свойства односторонней проводимости).

Рис. 1.

Рис. 2.

Рис. 1. Кривые угловых корреляций аннигиляционных квантов для кремниевого полупроводника *р-п-*типа: а — без электрического поля; b — после: термического отжига; по оси абсцисс — вертикальные углы $\theta \cdot 10^{-3}$ рад, по оси ординат — счет совпадений N в единицу времени.

Рис. 2. Кривые угловых корреляций аннигиляционных квантов для кремниевого полупроводника *р-п-типа:* a — через образец течет тох в 1 A; b — при запирающем напряжении в 2 B; по осям отложены те же величины. ⁴ что и на рис. 1.

На рис. 2а и в изображены кривые от того же образца, измеренные при приложенчи к образцу постоянного электрического поля напряженностью в 2 В в прямом и обратном направлениях. В первом случае (рис. 2a) через полупроводник тек ток в 1 А (при более высоких напряжениях образец сильно нагревался), во втором — было подано запирающее напряжение. Поскольку кривые на рис. 1 и 2 оказались уже кривой для «чистого» Si, нам казалось естественным вписать в них кривую этого образца, а оставшуюся часть выделить в виде кривых, изображенных в нижних частях рис. 1 и 2 (так называемая «узкая компонента»). Следует отметить, что кривые от образца и «чистого» Si сливаются на спадах, что также свидетельствует в пользу правомочности операции вписания. Интенсивности узкой компоненты, полуширины широкой и узкой компонент всех измеренных нами кривых сведены в таблицу. И, наконец, нами были проведены измерения на том же образце р-п-кремния с запирающим напряжением в 100 В. Полученная кривая при этом полностью совпала с кривой для «чистого» кремния.

Каким же образом следует объяснить полученные экспериментальные данные? Нетрудно по данным спектрального анализа образца вычислить концентрации мелких акцепторов в *p*-слое ($N_A = 5 \cdot 10^{19} \text{ см}^{-3}$) и мелких доноров в *n*-слое ($N_D = 2 \cdot 10^{19} \text{ см}^{-3}$). Сразу же отметим, что по данным

-		-					
10.00	~	n	η.			-	
1.1	ц	U		z	2		

Параметры аннигиляционных кривых от Si.

Образец — кремџиевый полупроводник <i>р-п-</i> типа	Полуширина в мрад	Полуширина узкой компоненты в 10 ⁻³ рад	Интенсивность узкой компоненты в 0/0		
Без поля	9,4 <u>+</u> 0,1	5,0±0,4	6,9 <u>+</u> 0,8		
После отжига	y,4±0,1	5,6±0,4	7,7±0,8		
При токе в 1 А	9,6 <u>+</u> 0,1	· 3,5±0,5	2,6 <u>+</u> 0,8		
При запирающем напря- жении в 2 В	9,6 <u>+</u> 0,1	3,5 <u>+</u> 0,5	2,9 <u>+</u> 0,8		

более ранних исследований [1] в сильно легированных полупроводниках как *p*-, так и *n*-типа узкая компонента, обусловленная, вероятнее всего, распадом пара-*Ps*, не наблюдалась. Следовательно, при интерпретации наших данных наличие узкой компоненты в корреляционных кривых связано непосредственно с наличием резкого *p*-*n*-перехода.

Оценим основные характеристики этого перехода [10]. Потенциал *p-n*-перехода, как известно, равен

$$V_D = k T/q \ln P_p / P_{no},$$

где $P_{no} = n_i^2/n_n = n_i^2/N_D$, а $P_p = N_A$. В случае Si $n_i^2 = 1,23 \cdot 10^{20} \ cm^{-6}$ и получаем $V_D = 1,15 B$. В свою очередь, полная ширина *p*-*n*-перехода определяется стандартным выражением

$$d = \left[\frac{2\varepsilon\varepsilon_0}{|q|} (N_D^{-1} + N_A^{-1}) (V_D + V_a)\right]^{1/2},$$

где є — диэлектрическая проницаемость Si, ε_o — аналогичная величина для вакуума, q — заряд электрона, V_a — прилагаемое напряжение смещения. При $V_a = 0$ и $V_D = 1,15$ В в нашем случае имеем d = 360Å. Заметим, что область *p-n*-перехода представляет собой двойной электрический слой (отрицательный заряд — в *p*-области, положительный — в *n*-области) и в нем совершенно отсутствуют свободные носители.

По-видимому, в нашем образце довольно большая часть позитронов образует в области *p-n*-перехода атом *Ps*, локализованный в этой области и имеющий большую кинетическую энергию, о чем говорят данные для полуширин узкой компоненты (см. таблицу). Термический отжиг делает *p-n*-переход, естественно, более «широким»; при этом резко ухудшаются его выпрямляющие свойства. Однако это не приводит к исчезновению истощенной свободными носителями области, где по-прежнему эффективно образуется атом *Ps* (см. рис. 1*b* и таблицу).

При приложении постоянного электрического поля как в прямом, так и обратном направлениях (рис. 2a и 2b), по-видимому, происходит делокализация атома Ps в области p-n-перехода, что уменьшает сразу же полуширину узкой компоненты и ее интенсивность. При приложении запирающего напряжения в 100 B атом Ps уже полностью делокализуется и «уходит» в объем полупроводника. При этом из-за динамического экранирования стабильными носителями *Ps* диссоциирует на электрон и позитрон, о чем говорит совпадение формы кривых угловой корреляции для «чистого» *Si* и нашего образца.

Такое объяснение наших экспериментальных данных, основанное на возможности образования локализованного атома *Ps* в области *p-n*-перехода, представляется нам наиболее реальным. Теоретические расчеты [4, 5, 7] подтверждают такую модель.

В заключение авторы считают своим долгом выразить благодарность Г. С. Мкртчяну за проведение эмиссионного спектрального анализа образцов.

Институт физических исследований АН АрмССР

Поступила 2. VII. 1979

ЛИТЕРАТУРА

1. Е. П. Прокопьев, Ю. Н. Кузнецов, Ф. Р. Хашимов. Основы позитроники полупроводников. Депон. в ЦНИИ «Электроника», ДЭ-2073, М., 1976.

2. G. Fabri, G. Poletti, G. Randone. Phys. Rev., 151, 356 (1966).

- 3. W. Weisberg, S. Berko. Phys. Rev., 154, 249 (1967).
- 4. Е. П. Прокопьев. ФТТ, 19, 472 (1977).

5. Е. П. Прокопьев. Химия высоких энергий, 12, 172 (1978).

6. К. П. Арефьев и др. ФТТ, 19, 1339 (1977).

7. А. З. Варисов, Ю. Н. Кузнецов, Е. П. Прокопьев. ДАН СССР, 239, 1082 (1978).

.8. И. Л. Еганян и др. Изв. АН АрмССР, Физика, 11, 66 (1976).

9. С. А. Воробьев. Прохождение бета-частиц через кристаллы, Атомиздат, М., 1975.

10. К. Зегер. Физика полупроводников, Изд. Мир, М., 1977.

ՊՈԶԻՏՐՈՆՆԵՐԻ ԱՆԻՀԻԼՅԱՑԻԱՆ Տ*i*-Ի *p*-n-ԱՆՑՄԱՆ ՏԻՐՈՒՅԹՈՒՄ

Ա. Գ. ԶԱԽԱՐՅԱՆՑ, Ա. Հ. ՄԱԼՈՅԱՆ, Ե. Պ. ՊՐՈԿՈՊՅԵՎ

Չափված են p-n-տիպի Si-ի կիսանաղորդիչի անինիլյացիոն թվանտների անկյունային կորելյացիայի կորերը։ Նմուշում, որի վրա էլեկտրական դաշտ չի կիրառվել, ինչպես նաև ջերմային այրման ենթարկված նմուշում նայտնաբերվել է 5 մոադ կիսայայնությամբ և-7% ինահնսիվությամբ նեղ բաղադրիչ։ Նմուշի վրա ուղիղ և նակառակ ուղղություններով 24 էլեկտրական դաշտի կիրառման դեպքում նեղ բաղադրիչի ինտենսիվությունը նվաղում է մինչև 2,6%, իսկ կիսայայնությունը՝ մինչև 3,5 մոադ։ Ստացված արդյունըների բացատրությունը կատարվել է p-n-անցման տիրույթում լոկայիղացված Ps ասոմի մողելի շրջանակներում.

THE ANNIHILATION OF POSITRONS IN THE REGION OF p-n-TRANSITION IN Si

A. G. ZAKHARIANTS, A. G. MALOYAN, E. P. PROKOPIEV

The curves of angular correlation of annihilation quanta from *n*-p-type silicon semiconductor were measured. In the sample with no electric field applied and in the annealed sample a narrow component with the half-width of 5 mrad and $\sim 7^{0}/_{0}$ intensity is found. After the application of 2 V to the sample in direct and reverse directions the intensity of the narrow component decreases down to $2,6^{0}/_{0}$ and its half-width to 3,5 mrad. The explanation of the obtained data are given in the framework of the model of localized Ps atom in the region of p-n-transition.