ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ ПОЛИКРИСТАЛЛИ-ЧЕСКОГО ФТАЛОЦИАНИНА МЕДИ С МОЛЕКУЛЯРНЫМ ЙОДОМ

А. А. САМУЭЛЯН, А. А. АВЕТИСЯН, Э. Г. ШАРОЯН

Получено и исследовано новое донорно-акцепторное соединение фталоциании меди-йод. Оно образуется в аморфной форме при диффузии молекул I_2 в поликристаллические образцы PcCu β -модификации. Диффузия молекулярного йода в β -PcCu в области температур 50 \div 100°C описывается выражением $D=2.10^{16} \exp(-43400/RT)$ см²сск. Показано, что наблюдаемые сигналы ЭПР обусловлены молекулярными ионами Pc + Cu (II), имеющими спин S=1. Обсуждены причины, из-за которых становится возможным наблюдение триплетных сигналов ЭПР в соединении фталоциании меди-йод в отличие от других соединений, в которых сигналы ЭПР от молекулярных ионов с S=1 не регистрируются из-за уширения.

Введение

В работе [1] исследованы комплексы диамагнитных поликристаллических фталоцианинов магния, цинка, никеля, алюминия и безметального фталоцианина с йодом. Установлено, что при взаимодействии фталоцианинов с йодом появляется интенсивный сигнал ЭПР (~10²⁰ спин/г), обусловленный образованием комплекса с переносом заряда (КПЗ). При этом КПЗ образуют поверхностные и приповерхностные ионные слои. В [2, 3] описаны результаты исследований взаимодействия йода с монокристаллами фталоцианина цинка (PcZn). Выявлены условия, при которых молекулы I2 проникают вглубь монокристаллов PcZn, где образуют с его молекулами парамагнитные КПЗ. Изучена зависимость параметров сигнала ЭПР от соотношения PcZn : 12. Обнаружено, что максимальные интегральные интенсивности, достигающие при комнатной температуре значений ~ 8.10¹⁹ спин/г, имеют образцы, в которых соотношение молекул йода и PcZn близко к 1:1. Из кинетических кривых накопления, сигнала ЭПР при 125 <7 <155°С определены коэффициенты диффузии молекул йода в образцы PcZn в этой температурной области.

Представляет несомненный интерес также исследование структурных и магнитных характеристик вещества, образующегося при взаимодействии йода с парамагнитными фталоцианинами, например, с фталоцианином меди (PcCu). В настоящей работе методами ЭПР и дифракционной рентгенографии исследованы структурные и магнитные характеристики донорноакцепторного соединения фталоцианин меди—йод, образующегося при взаимодействии молекул PcCu с молекулами I_2 , проникающими из газовой фазы в объем поликристаллического PcCu β-модификации. Исследована диффузия молекулярного йода в β -PcCu в области температур 50÷100°С. Исследованы также фазовые превращения PcCu, обусловленные воздействием йода и температурными изменениями.

Методика эксперимента

Препарат *PcCu* синтезирован по методу Линстеда [4] и очищен двойной возгонкой в вакууме. Его оптические и ИК-спектры полностью совпадают с литературными данными [5, 6].

Рентгеноструктурный анализ β -модификации фталоцианинов [7] показал, что эти соединения образуют кристаллы моноклинной сингонии и относятся к пространственной группе $P2_{1/a}$ (класс C_2^5); в каждой элементарной ячейке имеются 2 молекулы. Постоянные решетки β -*PcCu* следующие: $a = 19,6, b = 4,79, c = 14,6 Å, <math>\beta(< a, c) = 120,6^{\circ}$. β -модификация фталоцианинов может образовывать монокристаллы длиной до $1\div 1,5 cm$ в отличие от α -модификации, существующей лишь в поликристаллической форме. В [8] определена кристаллическая структура α -*PcCu*: тетрагональная сингония, пространственная группа P4/m (класс ' C_{4h}); в элементарной ячейке имеется 6 молекул. Постоянные решетки: a = 17,36, v = 17,3bc = 12,79 Å.

Для кинетических экспериментов β -*PcCu* растирался в ступке до размеров микрокристаллов ~ 10^{-4} см, затем помещался в стеклянную ампулу в количестве ~ $5 \cdot 10^{-3}$ г с 10^{-1} г мелкокристаллического йода, после чего из ампулы откачивался воздух до 10^{-3} тор. Спектры ЭПР записывались на радиоспектрометрах РЭ-1301 и ЭПР-В ($\lambda = 3,2$ см), рентгеновские дифрактограммы — на УРС-60 ($\lambda_{Cu} = 1,5418$ Å).

Результаты и обсуждение

Определение коэффициента диффузии І₂ в поликристаллический β-РсСи

Молекулы I_2 начинают проникать в β - ρ cCu при температурах выше 50°С, о чем можно судить по изменению формы спектра ЭПР: характерная для поликристалла с аксиальной симметрией асимметричная линия при $H \approx 3200$ s (рис. 1a) трансформируется в симметричную линию (рис. 16); при этом интегральная интенсивность нового сигнала составляет $85\pm15\%$ от прежней. В табл. 1 приведены значения g-факторов и параметра асимметрии A спектров ЭПР от образцов a и б (параметр асимметрии есть $A = (h_1 - h_2)/(h_1 + h_2)$, где h_1 и h_2 — максимальные амплитуды производной поглощения). Темно-синяя окраска порошка фталоцианина в ходе взаимодействия переходит в черно-фиолетовую. Скорость процесса увеличивается с возрастанием температуры и сопровождается аморфизацией фталоцианина (данные рентгенографии, рис. 2a, 6). При снижении температуры после завершения описанного процесса форма спектра ЭПР остается симметричной.

В [1] установлено, что при контакте паров йода с аморфными и поликристаллическими образцами диамагнитных фталоцианинов в вакууме сигнал ЭПР появляется практически мгновенно уже при комнатной температуре. Сигнал ЭПР объяснялся образованием поверхностных КПЗ. В случае *РсСи* при тех же условиях какого-либо заметного изменения

Рис. 1. Спектры ЭПР: а) β-РсСи; б) комплекса фталоциании меди-йод; в) аморфио-кристаллического РсСи со следами йода; г) α-РсСи. Рис. 2. Рентгенограммы образцов а-г.

177		-					
1	a	0.	л	u	u	a	1

Образец	g 1	g _	$g_{\Delta M=2}$	A
a) Поликристаллический β-Ре	cCu 2,18+0.01	2,043±0,005	4;15±0,01	0,35±0,05
б) Аморфный комплекс фтало нин меди-йод	2.057	1 <u>+</u> 0,005	4,13±0,01	0,03 <u>+</u> 0,01 0,01 <u>+</u> 0,01*
 в) Аморфно-кристаллический РсСи со следами йода 	2,130+0,00	5,2,035 <u>+</u> 0,005	-	0,55+0,02
а) Поликристаллический а-Ре	Cu 2,127±0,00	2,045 <u>+</u> 0,005	4,14 <u>+</u> 0,01	0,35±0,05

* Образец получен после повторной диффузии в (а-РсСи).

спектра ЭПР не происходит, что можно объяснить, по-видимому, незначительностью доли поверхностных центров по сравнению с долей объемных центров, вследствие чего обусловленное первыми изменение формы спектра будет незаметным на фоне интенсивного сигнала.

Кинетику процесса взаимодействия I_2 с β -*P*с*Cu* можно изучить, следя за изменением параметра асимметрии A со временем при постоянной температуре. На рис. За приведены кинетические кривые изменения параметра асимметрии для разных температур; A_0 — начальное значение A, равное 0,3. Учитывая мгновенность комплексообразования [1], можно, очевидно, заключить, что измеряемое в настоящих опытах время изменения формы спектра ЭПР лимитируется процессом проникновения молекул I_z в объем кристаллов β-*PcCu* (диффузия сопровождается деструкцией решетки). Действительно, кривые, приведенные на рис. За, за исключением началь-

Рис. 3. а) Кинетические кривые изменения параметра асимметрии при взаимодействии йода с *PcCu*; б) линейные анаморфозы кривых рисунка а.

ных участков подчиняются обычному диффузионному соотношению. На рис. Зб приведсны линейные анаморфозы кинетических кривых в координатах $(1 - A/A_0) \sim (t - t_0)^{1/2}$, где t_0 — время запаздывания, получаемое экстраполяцией по диффузионному закону кривых рис. За; t_0 характеризует интервал времени от начала вхождения I_2 в поверхностный слой PcCuдо установления стационарного режима диффузии [9]. Эначения t_0 при разных температурах приведены в табл. 2.

Таблица 2

T°C	60	70	80	90	100
D·10 ¹³ , см ² сек	5,3	24	176	1230	3160
t ₀ , мин	60	5	0	0	0

Относительное изменение параметра асимметрии со временем представляется формулой

$$A(t)/A_0 = 1 - a\sqrt{2D(t-t_0)}/l_0,$$
 (1)

где D — коэффициент диффузии, $l_0 \approx 10^{-4}$ см — средний размер микрокристаллов PcCu, $a = 3 \pm 1$ — константа, зависящая от геометрии микрокристаллов. Уравнение (1) выведено в предположении, что изменение па-

А. А. Самуэлян и др.

раметра асимметрии пропорционально объему V = Sx, в который продиффундировал йод за время t, с использованием известного диффузионного соотношения $x = \sqrt{2Dt}$, где x — глубина проникновения диффундирующего фронта. Используя уравнение (1), из линейных анаморфоз рис. Зб нами определены коэффициенты диффузии (см. табл. 2), описываемые формулой

$$D = D_0 \exp\left(-\frac{Q}{RT}\right),\tag{2}$$

где предәкспоненциальный множитель $D_0 = 2 \cdot 10^{16\pm3}$ см²сек, энергия активации диффузии $Q = 43.4 \pm 5$ ккал/моль, R — универсальная газовая постоянная, T — абсолютная температура.

На рис. За приведена также кинетическая кривая, относящаяся к повторной диффузии (также сопровождаемой аморфизацией вещества) йода во фталоциании, полученный после предварительного извлечения (откачки с нагревом) йода из [*PcCu*—йод] и являющийся, как будет показано ниже, α-модификацией *PcCu* (α-*PcCu*).

2. ЭПР комплекса фталоцианин меди-йод

На рис. 1 приведены спектры ЭПР PcCu: a) до напуска паров йода (β -PcCu); б) после полного проникновения йода в PcCu; в) после откачки I_2 из образцов б при $T < 100^{\circ}$ С; \imath) после полной откачки йода при 130 \div 150°С. Спектры сняты при комнатной температуре. Эначения g-факторов и параметр асимметрии представлены в табл. 1. На рис. 2 приведены соответствующие вышеуказанным образцам рентгенограммы. Ниже мы дадим анализ этих спектров, уделяя основное внимание случаю б.

а) Основной ЭПР-сигнал поглощения в поликристаллических образцах β -*PcCu* представляет собой асимметричную линию при $H \approx 3200$ э (рис. 1*a*), обусловленную анизотропией *g*-фактора. Дополнительное поглощение с g = 4,15, интегральная интенсивность которого в 1600 раз меньше основного, относится к запрещенному переходу, удовлетворяющему правилу отбора $\Delta M = 2$. Оно разрешено в первом приближении теории возмущений при учете магнитных диполь-дипольных, обменных и сверхтонких взаимодействий; подробный анализ проведен в [10]. Снятые нами рентгенограммы β -*PcCu* (рис. 2*a*) идентичны литературным [11].

6) Почти симметричный сигнал ЭПР при $H \approx 3200$ э (рис. 16), получаемый при полной диффузии I_2 в PcCu, очевидно, обусловлен КПЗ фталоцианин меди-йод, в котором PcCu является донором, а йод — акцептором. Об образовании комплекса можно судить по изменению формы и значений g-факторов спектра ЭПР, а также по изменению цвета. Рентгеноструктурный анализ констатирует аморфность образующегося вещества (рис. 26) и подтверждает проникновение йода во весь объем решетки фталоцианина.

Электрохимические исследования металлопорфиринов [ТФП-М (II)]соединений, структурно подобных фталоцианинам, показали, что эти молекулы имеют два активных реакционных центра — центральный атом металла и тетрапиррольный лиганд [12]. При их окислении положительный заряд (от +1 до +3) локализуется либо на атоме металла, либо на тетрапиррольном лиганде, либо на том и другом одновременно в зависимости от природы металла. В случае тетрафенилпорфина меди [ТФП-Cu (II)] показано [12, 13], что при его окислении образуются моно- и дикатионы ТФП-Cu с локализацией заряда на лиганде: ТФП⁺-Cu и ТФП⁺-Cu.

Как было показано в [1, 3], в случае взаимодействия диамагнитных фталоцианинов с йодом происходит перенос электрона с фталоцианинов на йод с образованием ионного основного состояния. И в случае PcCu пра взаимодействии с молекулами йода происходит перенос электрона, причем по аналогии с ТФП-Cu можно предположить, что перенос осуществляется с лигандного фталоцианинового кольца. В результате имеем катион фталоцианина меди Pc^+Cu (II) в триплетном состоянии с S = 1, обусловленном двумя неспаренными электронами, один из которых делокализован по фталоцианиновому кольцу, а другой — 3d-электрон Cu (II) (электронная конфигурация $3d^9$). У нас нет экспериментальных данных о том, какие анионы йода присутствуют в соединении фталоцианин меди—йод; возможные состояния I_3^- , I^- и I_5^- диамагнитны, а в случае I_2^- сигнал ЭПР не наблюдался бы вследствие уширения линии из-за анизотропии g-фактора и больших констант сверхтонкой структуры [16].

Следует отметить отсутствие сигнала ЭПР в случае монокатиона ТФІІ+-Си в [12, 13]; в [12] триплетная природа ТФП+-Си была установлена измерениями статической магнитной восприимчивости. Очевидно, отличие наших экспериментов от [12, 13] заключается в получении магнитно-концентрированных образцов, где обменные взаимодействия между соседними комплексами существенны и могут приводить к усреднению различных начальных расщеплений, из-за которых сигнал ЭПР в разбавленных порфиринах уширен. Таким образом, межмолекулярные обменные эзаимодействия приводят к значительному уменьшению величины тонкой структуры D, которая становится меньше наблюдаемой ширины линии, вследствие чего в спектре ЭПР видна только одна линия поглощения. Так как в триплетном состоянии g-фактор равен среднеарифметическому от g-факторов взаимодействующих частиц, то g-фактор комплекса фталоцианин меди-йод должен быть равен $\overline{g} = 1/2 (g_{Cu (II)} + g_{Pc})$, где значение *g*-фактора *Cu* (II) в *PcCu* $g_{Cu (II)} = (g_1 + 2g_1)/3 = 2,089$, а *g*-фактор фта-лоцианинового кольца есть 2,003 [1, 3]. Действительно, *g*-фактор комплекса фталоцианин меди-йод, равный 2,057±0,005 (см. табл. 1), в пределах ошибок эксперимента совпадает с $\overline{g} = 2,046$.

Наблюдаемый нами запрещенный $\Delta M = 2$ переход в половинном поле H = 1618 э, интегральная интенсивность которого в 4000 раз меньше интенсивности основного перехода, объясняется триплетным состоянием S = 1 комплекса фталоцианин меди-йод.

Измерение температурной зависимости интегральной интенсивности ЭПР поглощения в интервале 77÷370°К показало, что она следует закону Кюри. По-видимому, триплетный уровень является основным, а величина скнглет-триплетного расщепления J > 0,05 эв. Ширина линии сигнала ЭПР комплекса фталоцианин меди-йод есть $\Delta H = 85$ э и практически не вависит от температуры в интервале 77÷370°К. Остаточная асимметрия сигнала ЭПР в образцах PcCu-йод, равная $A = 0.03\pm0.01$, обусловлена, очевидно, наличием молекул PcCu со смешанной валентностью [17].

в) Откачкой в вакууме при $T < 100^{\circ}$ С из комплекса фталоциании меди-йод выделяется значительная часть йода, что сопровождается трансформацией симметричного сигнала ЭПР в асимметричный (рис. 1s) и изменением цвета образцов от черно-фиолетового до сине-фиолетового. Соответствующая рентгенограмма для образцов s, приведенная на рис. 2s, отличается от известных рентгенограмм PcCu β -, α - и γ -модификаций (см. рис. 2a и z, а также [10, 15]). Вероятно, в результате неполного извлечения йода получается аморфно-кристаллическая форма PcCu с остатками йода. Следует отметить, что в той же мере йод выходит из образца и безнагревания на открытом воздухе в течение нескольких часов.

г) Йод можно полностью извлечь из образцов б и г откачкой в вакууме в течение ~ 3 часов при температуре $130 \div 150^{\circ}$ С. Рентгенограмма рис. 2г показывает, что при этом получается образец г α -модификации $P_{c}Cu$ (II) ,имеющий синий цвет. Природа сигналов ЭПР α - $P_{c}Cu$ при $g \approx 2$ и $g \approx 4$ (рис. 1г) аналогична β - $P_{c}Cu$ [10]; сигнал при $H \approx 1200$ э появляется при $T > 150^{\circ}$ К. Природа этого термовозбужденного сигнала нами не выяснена.

В заключение отметим, что наряду с превращениями $PcCu \beta \rightarrow$ аморфный $\rightarrow \alpha$, обусловленными воздействием йода, легко осуществить обратный $\alpha \rightarrow \beta$ -фазовый переход PcCu. Нагревание в вакууме переводит α , γ - и аморфные формы в β -модификацию [6, 15]. В [15] указывалось, что $\alpha \rightarrow \beta$ -фазовый переход для PcH_2 и PcCu имеет место при $T > 200^{\circ}$ С. Мы наблюдали $\alpha - \beta$ -фазовый переход PcCu по изменению спектров ЭПР, нагревая образцы в резонаторе ЭПР-спектрометра. Полный фазовый переход в β -PcCu происходит при $T = 230^{\circ}$ С за время $t \approx 30$ мин. Переход в β -модификацию подтвержден рентгенографически.

Институт физических исследований АН АрмССР

Поступила 27.Х.1978-

ЛИТЕРАТУРА

- 1. Э. Г. Шароян в др. ЖЭТХ, 1, 519 (1965).
- 2. Э. Г. Шароян, А. А. Самуэлян. ДАН АрмССР, 54, 154 (1972).
- 3. Э. А. Маркосян, А. А. Самуэлян, Э. Г. Шароян. ЖФХ, 47, 18 (1973).
- 4. P. A. Barret, C. E. Dent, R. P. Linstead. J. Chem. Soc., 1719 (1936).
- 5. C. E. Ficken, R. P. Linstead. J. Chem. Soc., 4847 (1952).
- 6. А. Н. Силоров, И. П. Котляр. Оптика и спектроскопия, 11, 175 (1961).
- 7. J. M. Robertson. J. Chem. Soc., 615 (1935).
- 8. M. T. Robinson, G. E. Klein. J. Am. Chem. Soc., 74, 6294 (1952).
- Проблемы физики и химии твердого состояния органических соединений, Изд. Мирь М., 1968.

10. А. А. Самуэлян, О. С. Торосян, Э. Г. Шароян. ФТТ, 21, 225 (1979).

- 11. Jr. R. H. Wiswall. U. S. Patent, 2, 486, 351 (Oct. 25, 1949).
- 12. A. Wolberg, J. Manassen. J. Am. Chem. Soc., 92, 2982 (1970).
- 13. А. П. Бобровский, Н. П. Елецкий, В. И. Титов. ЖЭТХ, 12, 826 (1976).

14. R. Taube, H. Arfert. Z. Naturforsch., B22, 219 (1967). 15. F. W. Karasek, J. C. Decius. J. Am. Chem. Soc., 74, 4716 (1952).

ԲԱԶՄԱԲՅՈՒՐԵՂ ՊՂՆՁԻ ՖՏԱԼՈՑԻԱՆԻՆԻ՝ ՄՈԼԵԿՈՒԼՅԱՐ ՅՈԴԻ ՀԵՏ ՓՈԽԱԶԴԵՑՈՒԹՅԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ

2. Ա. ՍԱՄՈՒԵԼՑԱՆ, Ա. Ա. ԱՎԵՏԻՍՅԱՆ, Է. Գ. ՇԱՐՈՅԱՆ

Ստացված և ուսումնասիրված է նոր դոնորա-ակցեպտորային միացունյուն՝ պղնձի ֆաալոցիանին-լող։ Վերջինս առաջանում է ամորֆ վիճակում β-մոդիֆիկացիայի բազմաթյուրեղ PCCu նմուշներում I_2 մոլեկուլների դիֆուդիայի հետևանջով։ 50–100°C ջերմաստիճանային տիրույնում մոլեկուլյար լոդի դիֆուդիան β-PCCu-ում նկարադրվում է D=2.10¹⁶ exp (-13400/RT) ud2 վկ բանաձևով։ Յույց է տրված, որ դիտվող էՊՌ աղդանշանները պայմանավորված են PCCu(II) իոններով, որոնց սպինը՝ S=1։ Քննարկված են այն պատճառները, որոնց շնորքիվ հնարավոր է էՊՌ տրիպլետ աղդանշանների դիտումը պղնձի ֆտալոցիանին-լոդ միացունկունում ի տարբերունկուն ուրիշ միացունկունների, որտեղ նման S=1 սպին ունեցող իոնները չեն տալիս դրանցվող էՊՌ աղդանշաններ։

THE INVESTIGATION OF THE POLYCRYSTALLINE COPPER PHTHALOCYANINE INTERACTION WITH MOLECULAR IODINE.

A. A. SAMUELIAN, A. A. AVETISIAN, E. G. SHAROYAN

The new donor-acceptor compound copper phthalocyanine-iodine is obtained and investigated. It is formed in the amorphous state during the diffusion of I_2 molecules into the polycrystalline PcCa samples of β -modification. In the temperature range of $50\div100^{\circ}$ C the diffusion of molecular iodine into the β -PcCa is described by expression $D = 2 \cdot 10^{16} \exp(-43400/RT) \operatorname{cm}^3 \sec$. It is shown, that the observed EPRsignals are due to the Pc^+Cu (II) ions with spin S = 1. The reasons are discussed which render possible the observation of triplet EPR signals in the copper phthalocyanine-iodine compound contrary the others, where similar ions with S = 1don't reveal detectable EPR signals.