НЕКОТОРЫЕ СООБРАЖЕНИЯ О СОСТАВЕ РАЗНЫХ ПОТОКОВ КОСМИЧЕСКИХ АДРОНОВ НА ВЫСОТАХ ГОР

二重性

с. в. митоян

Приводятся некоторые теоретические и экспериментальные доказательства возможного состава адронов с энергией E>1 T 98 в разных потоках космических лучей на высотах гор. Сделанные оценки показывают, что среди групп адронов доля пионов существенно больше, чем среди одиночных адронов.

Требования физики высоких энергий в настоящее время приводят к такой предполагаемой программе дальнейших исследований [1], в которой отмечается особая важность экспериментальной проверки универсальности распределений (или отсутствия такой универсальности) для различных типов налетающих частиц (p, n, K, π , l, γ и т. д.), а также изучения состава образованных частиц для различных мишеней и типов налетающих частиц.

Разумеется, такие исследования корректнее проводить на ускорителях. Тем не менее известно, что эксперименты в космических лучах, если учесть особенности этих экспериментов, позволяют получить некоторые указания о тех или иных вопросах физики высоких энергий. К тому же тот факт, что в космических лучах есть частицы практически любых энергий (до ~ 10²⁰ эв), позволяет получить экспериментальные данные по некоторым основным характеристикам взаимодействий в области таких высоких энергий, которые в настоящее время практически не реализуемы в лабораторных условиях. Однако при проведении экспериментов в космических лучах, как необходимость, возникает вопрос выяснения природы налетающих частиц, вопрос о составе потоков частиц космических лучей. До сих пор ни в одном эксперименте по изучению характеристик элементарного акта взаимодействия космических лучей не осуществлен прямой метод идентификации природы частиц с энергией $E_{\rm o} > 1~Tss^*$. Применяются косвенные методы [4], которые позволяют провести статистическое сравнение и определение характеристик взаимодействий адронов космических лучей разной природы с энергией $E_0 > 1 \ T_{98}$.

Один из таких методов, применяемых в экспериментах на высотах гор [5, 6], заключается в изучении характеристик взаимодействий адронов космических лучей, приходящих на установку в составе групп частиц, т. е. в составе электронно-ядерного ливня, развивающегося в атмосферс. Взаимодействия в установке таких адронов из многоструйных ливней обусловлены как нуклонами, так и пионами, поскольку в электронно-ядер-

^{*} В работе [2] по изучению состава космических лучей на высотах гор при разделении пионов и протонов с энергией $\overline{E}=160~\Gamma$ в использовалось различие ионизационных потерь пионов и протонов. В работе [3] разделение пионов и протонов с энергией $100~\Gamma$ в $< E < 3000~\Gamma$ в осуществлялось детекторами переходного излучения.

ных ливнях п-мезоны составляют большую часть ($\sim 80\%$) всех адронов. Одновременно изучаются взаимодействия одиночных адронов, которые не сопровождаются адронами сравнимой энергии и имеют ограниченное сопровождение атмосферным ливнем. При этом предполагается, что в потоке одиночных адронов основную долю составляют нуклоны.

Точное и обоснованное рассмотрение состаба в потоках одиночных адронов и адронов, падающих на установку группами, требует, по-видимому, сложных машинных расчетов и целенаправленных экспериментов. Тем не менее в настоящей работе на основе обобщения известных экспериментальных результатов мы попробуем привести некоторые теоретические соображения о возможном составе адронов с энергией $E_0 > 1$ T эв в разных потоках космических лучей на высотах гор. При этом будем предполагать, что поток адронов космических лучей состоит из нуклонов и пионов.

 Долю пионов среди одиночных адронов можно оценить, исходя из следующих соображений.

Допустим, что среди одиночных адронов доля пионов составляет α , т. е. $J_{\pi} = \alpha J_{0,1}$; тогда доля нуклонов соответственно будет (1— α) и $J_N = (1-\alpha) J_{0,1}$ (J_{π} , J_N , $J_{0,1}$ — потоки одиночных пионов, нуклонов и одиночных адронов с энергией $E_0 \gtrsim 1$ Tss). На глубине атмосферы t поток одиночных нуклонов должен превышать поток «проскочивших» протонов с данной энергией, т. е. должно иметь место следующее соотношение:

$$J_{ox}(E \gtrsim 1 \text{ Tos, } t) (1-\alpha) \gtrsim J_p^0(E \gtrsim 1 \text{ Tos}) \cdot \exp(-t/\lambda_N), \tag{1}$$

где поток первичных протонов с энергией $E\gtrsim 1$ T вв на границе атмосферы, согласно данным работы [7], есть

$$I_p^0(E \gtrsim 1 \text{ Tos}) \simeq 240 \text{ m}^{-2} \text{ vac}^{-1} \text{ cmep}^{-1}$$
.

Поток одиночных адролов на высотах гор $(t=700\ \iota\ cm^{-2})$ с энергией $E\gtrsim 1$ Тэв, согласно данным работы [8], есть

$$J_{\text{OI}}(E \gtrsim 1 \text{ T9B}, t = 700 \text{ i cm}^{-2}) \simeq 7 \cdot 10^{-2} \text{ m}^{-2} \text{ uac}^{-1} \text{ cmep}^{-1}$$

Пробег взаимодействия нуклонов с ядрами воздуха можно оценить, исходя из того очевидного факта, что рост сечения неупругого взаимодействия на легких ядрах происходит не быстрее, чем в *pp*-взаимодействии, т. е.

$$\frac{\sigma_{pA}^{in}\left(E\right) - \sigma_{pA}^{in}\left(20 \ \Gamma_{9B}\right)}{\sigma_{pA}^{in}\left(20 \ \Gamma_{9B}\right)} \leqslant \frac{\sigma_{pp}^{in}\left(E\right) - \sigma_{pp}^{in}\left(20 \ \Gamma_{9B}\right)}{\sigma_{pp}^{in}\left(20 \ \Gamma_{9B}\right)} \simeq 0,16$$

в интервале энергий $E=20\div 1000~\Gamma$ эв [9]. Следовательно, допустив, что рост $\sigma_{p\text{-воздух}}$ с энергией такой же*, как в pp-взаимодействии, можно получить, что при $E\gtrsim 1~\Gamma$ эв $\lambda_N=83~i~\text{см}^{-2}$ [11].

Подставляя соответствующие численные значения в соотношение (1), можно оценить долю пионов среди одиночных адронов: $\alpha \lesssim 0,25$.

* В действительности
$$\frac{\sigma_{pA}^{in}(E) - \sigma_{pA}^{in}(20)}{\sigma_{pA}^{in}(20)} < \frac{\sigma_{pp}^{in}(E) - \sigma_{pp}^{in}(20)}{\sigma_{pp}^{in}(20)}$$
 [10].

2. Другой подход к оценке доли пионов в потоке одиночных адронов состоит в рассмотрении доли пионов и нуклонов с равной энергией, рожденных в одном акте взаимодействия, который происходит достаточно далеко над установкой. При этом возможно, что ливень, порожденный вторичными частицами, рожденными в этом взаимодействии, успевает поглотиться, а одна, наиболее энергичная, частица доходит до установки, и в этом случае она регистрируется как одиночная частица.

В этом случае необходимо определить отношение числа пионов с энергией $\gtrsim E$ к числу нуклонов с энергией $\gtrsim E$, рожденных в одном акте взаимодействия потоком адронов (нуклонов) космических лучей. Несложно получить, что отношение вероятности наблюдать пион с энергией $\gtrsim E$

к вероятности наблюдать нуклон с энергией $\gtrsim E$ равно

$$\frac{W_{\pi}(\geq E)}{W_{N}(\geq E)} = \langle n_{s} \rangle \frac{\int_{0}^{1} x^{\beta} \frac{d^{3}\pi}{dx} dx}{\langle x^{\beta} \rangle},$$

где

$$< x^{\beta} > \equiv \int_{0}^{1} x^{\beta} \frac{d^{5} N}{dx} dx$$

при условии нормировки

$$\int_{0}^{1} \frac{d\sigma_{N}}{dx} dx = 1.$$

Результаты работы [9] дают $< x^{1.7} > \simeq 0,27$. Используя эксперимент гарыне данные, приведенные в работе [12], можно вычислить

$$\int_{0}^{1} x^{\beta} \frac{d^{5}x}{dx} dx = \int_{0}^{1} x^{1.7} 9 \exp(-9 x) dx \simeq 4 \cdot 10^{-3}.$$

Далее, учитывая, что среднее число π^+ -мезонов в одном акте взаимодействия адронов есть $< n_s > \simeq 10$, при энергиях $E_0 \gtrsim 1$ T эв получаем

$$\frac{W_{\pi}(\gtrsim E)}{W_{N}(\gtrsim E)} \simeq 0.15. \tag{2}$$

Если учесть, что в космических лучах регистрируются лишь частицы, летящие в переднюю полусферу, т. е. регистрируется примерно $< n_s > /2$ частиц. то

$$\frac{W_{\pi}(\gtrsim E)}{W_{N}(\gtrsim E)} \simeq 0.08.$$

Таким образом, среди потока частиц, рожденных в одном акте взаимодействия, вероятность наблюдать пион данной энергии примерно в 7 разменьше, чем вероятность наблюдать нуклон. В потоке одиночных частиц эта вероятность будет меньше, так как пионы с энергией $E \geqslant 1$ T эв должны регистрироваться без воздушного сопровождения, а генерация пионе

высокой энергии требует взаимодействия частицы с энергией $E_0 \gtrsim 5E$ (если принять, что $E/E_0 \lesssim 0.2$ [9]). Это означает, что неизбежно будет сопровождающий ливень. А для нуклона $E_0 \sim E$, т. е. неупругость небольшая и сопровождающего ливня не будет.

3. Продолжая вышеприведенные рассуждения, можно получить грубую оценку для отношения вероятности наблюдать пион с энергией $\gtrsim E$ к вероятности наблюдать нуклон с энергией $\gtrsim E$ на глубине атмосферы t. Это отношение можно записать следующим образом:

$$I = \frac{W_{\pi}(\gtrsim E) \exp\left(-t/\lambda_{\pi}\right)}{W_{N}(\gtrsim E) \exp\left(-t/\lambda_{N}\right)},$$
(3)

где λ_n и λ_N — пробеги взаимодействия пионов и нуклонов в воздухе. Учитывая, что $\lambda_r/\lambda_N \sim 1$, 2 [15], а также значение (2), из (3) можно получить

$$I = 0.15 \cdot \exp \{0.2 \, t/\lambda_N\},\tag{4}$$

т. е. вероятность наблюдать пион с энергией $\gtrsim E$ среди потока адронов независимо от сопровождения с ростом глубины t растет. Для $t=700~{\rm r~cm^{-2}}~(l_N \simeq 83~{\rm r~cm^{-2}}~[11])$ имеем

$$I \simeq 1,85,$$

- т. е. на высотах гор среди потока адронов (независимо от сопровождения) вероятность наблюдать пион данной энергии примерно в 1,2 раза меньше, чем вероятность наблюдать нуклон.
- 4. Долю пионов среди потока адронов, падающих на установку группами, можно оценить из экспериментальных данных, рассмотренных в [4]. Согласно этим данным, в событиях падения на установку адронов $(5\cdot 10^{14}\ 98\lesssim E_0\lesssim 5\cdot 10^{14}\ 98)$ группами* средняя множественность частиц есть

$$< n_n > \gtrsim 3.6 \pm 0.4$$

(знак «>» стоит из-за того, что в струе с наибольшей энергией в некоторых случаях может находиться больше одной высокоэнергичной частицы, и это обусловлено ограниченной разрешающей способностью установки). Среди этих ~ 3,6 частиц может быть один нуклон, а может не быть и ни одного. В этом случае доля нуклонов есть

$$W_N/W_h \lesssim 0.28 \pm 0.03$$
.

т. е. пионы составляют более 70% адронов, падающих на установку группами.

 U_3 этих же данных [4] для средней множественности адронов с энергией $5\cdot 10^{14}$ эв $\geqslant E_{\rm o} > 10^{12}$ эв в событиях падения на установку одиночных адронов и адронов в составе групп получается эначение

^{*} Установка (ионизационный калориметр в сочетании с контролируемыми ядерными фотоэмульсиями с площадью горизонтальной поверхности $10~\text{M}^2$ работала на глубине атмосферы $700~\text{г см}^{-2}$ на г. Арагац) срабатывала, когда суммарное энерговыделение в калориметре превышало пороговую энергию $E_o > 1~T$ эв.

$\langle n_n \rangle \geqslant 1,75 \pm 0,15.$

Доля нуклонов в потоке адронов с энергией $E_{\rm o}>1$ T эв на высотах гор (независимо от сопровождения) соответственно будет

$$W_N/W_h \lesssim 0.57 \pm 0.07$$
.

Полученное значение удовлетворительно согласуется с грубой теоретической оценкой (4), а также оценками работы [14].

При найденных соотношениях пионов и нуклонов в потоках одиночных адронов и групп адронов, по-видимому, можно изучать некоторые характеристики взаимодействий [4] пионов и нуклонов в экспериментах в космических лучах. Следует, однако, подчеркнуть, что сделанные оценки носят приближенный характер, иллюстрирующий, что среди групп адронов, по-видимому, доля пионов существенно больше, чем среди одиночных адронов.

Автор считает своим приятным долгом выразить глубокую благодарность Н. Л. Григорову за ценные советы.

Ереванский политехнический институт им. К. Маркса

Поступила 22.І.1978

ЛИТЕРАТУРА

- 1. Ю. П. Никитин, И. Л. Розенталь, Ф. М. Сергеев. УФН, 121, 3 (1977).
- 2. Г. Л. Башинджагян н др. Изв. АН СССР, сер. физ., 40, 951 (1976).
- 3. R. W. Ellsworfh et al. XV Intern. Conf. Cosm. Rays, Plovdiv, 7, 415 (1977).
- 4. С. В. Митоян. Кандидатская диссертация, ФИАН СССР, 1978.
- Н. Л. Григоров и др. Изв. АН АрмССР, Физика, 9, 363 (1974).
- Н. Л. Григоров и др. Изв. АН АрмССР, Физика, 8, 93 (1973).
- 7. V. V. Akimov et al. Acta Phys., Acad. Sc. Hung., 29. Suppl., 1, 517 (1970).
- 8. В. Я. Шестоперов. Изв. АН СССР, сер. физ., 9, 1927 (1970).
- 9. P. R. O. Morrison. Preprint CERN, 73-46.
- 10. R. I. Glauber, G. Mathias. Nucl. Phys., B21, 135 (1970).
- 11. Н. Л. Григоров. ЯФ, 23, 588 (1976).
- 12. J. Whitmore. Phys. Reports, 10C, 275 (1974).
- 13. Н. В. Андреез, Н. М. Дремин. УФН, 122, 37 (1977).
- 14. Н. Л. Григоров. ЯФ, 25, 788 (1977).

ՈՐՈՇ ԴԱՏՈՂՈՒԹՅՈՒՆՆԵՐ ՍԱՐԵՐԻ ԲԱՐՁՐՈՒԹՅԱՆ ՎՐԱ ԿՈՍՄԻԿԱԿԱՆ ԱԴՐՈՆՆԵՐԻ ՏԱՐՔԵՐ ՀՈՍՔԵՐԻ ԲԱՂԱԴՐՈՒԹՅԱՆ ՄԱՍԻՆ

U. 4. Ursnaut

Բերվում են որոշ տեսական ու փորձարարական ապացույցներ սարերի թարձրության վրա E>1 ՏԷՎ էներդիայով կոսմիկական ադրոնների տարբեր հոսջերի հնարավոր բաղադրության մասին։ Արված գնահատումները ցույց են տալիս, որ ադրոնների խմբերում պիոններն էապես ավելի մեծ մաս են կազմում, թան միայնակ ադրոնների դեպրում։

SOME CONSIDERATIONS ON THE COMPOSITION OF DIFFERENT FLUXES OF COSMIC RAY HADRONS AT MOUNTAIN ALTITUDES

S. V. MITOYAN

Some theoretical and experimental evidences on the possible composition of cosmic ray hadrons with energy E>1 TeV in different fluxes at mountain altitudes are given. The estimations indicate, that in the hadron groups the part of pions essentially exceeds that among the single hadrons.