ИССЛЕДОВАНИЕ ИНДУЦИРОВАННОЙ ОПТИЧЕСКОЙ АНИЗОТРОПИИ В ПАРАХ НАТРИЯ

В. М. АРУТЮНЯН, А. Ж. МУРАДЯН, А. В. КАРМЕНЯН

Исследуется индуцированная лазерным излучением оптическая анизотропия в поле линейно-поляризованной волны. Показано, что вдали от линий поглощения в газовой среде индуцируются оптические одноосные свойства. Приведены экспериментальные результаты в атомарных парах натрия.

В поле мощного лазерного излучения газовая среда приобретает анизотропные оптические свойства. Вид оптической анизотропии зависит от поляризации интенсивного излучения: в поле интенсивной волны круговой поляризации вдали от линий поглощения газовая среда обладает гиротропными свойствами, а в поле интенсивной волны линейной поляризации в газе индуцируются одноосные свойства с оптической осью вдоль электрического вектора волны. На линиях поглощения проявляется индуцированный дихроизм. Даже при малых нелинейностях индуцированная анизотропия приводит к значительному изменению поляризации пробного сигнала, проходящего через резонансную среду. Это явление было теоретически предсказано и экспериментально наблюдено в парах калия в [1]. В парах натрия поворот плоскости поляризации был обнаружен в [2, 3]. В спектроскопии изменение поляризации пробного сигнала использовалось для исследования β-линий Бальмера [4], различных линий и сверхтонкой структуры газообразного неона [5], колебательной и вращательной структур некоторых молекул [6]. Теоретическое исследование индуцированной анизотропии в парах щелочных металлов вблизи однофотонного и двухфотонного резонансов было проведено в [7, 8]. В [9] теоретически было исследовано вращение плоскости поляризации с учетом релаксаций среды и уширения спектральных линий.

Ниже изучается явление индуцированной оптической анизотропии в атомарных парах натрия в условиях однофотонного резонанса. Частота ω интенсивной волны и частота ω' слабой зондирующей волны близки к частоте ω_0 перехода из основного состояния $3\,S_{1/2}$ в состоянии $3\,P_{1/2}$, $_{3/2}$ первого возбужденного дублета. Заметим, что переход в состояние $3P_{1/2}$ к индуцированным одноосным свойствам не приводит. Для компонент тензора дивлектрической проницаемости в поле интенсивной волны линейной поляризации в приближении, когда можно пренебречь трехфотонным возбуждением уровня $3\,P_{3/2}$ (например, когда волны распространяются навстречу друг другу), получаем

$$\begin{aligned} \varepsilon_{i} &= \varepsilon_{xx} = 1 + q \left(\frac{\sqrt{1+\xi}+1}{2\sqrt{1+\xi}} \right)^{2} \frac{1}{\varepsilon' + \varepsilon (\sqrt{1+\xi}-1)}, \\ \varepsilon_{\perp} &= \varepsilon_{yy} = \varepsilon_{zz} = 1 + \frac{q}{4} \left(\frac{\sqrt{1+\xi}+1}{2\sqrt{1+\xi}} \right)^{2} \frac{1}{\varepsilon' + \varepsilon (\sqrt{1+\xi}-1)} + \end{aligned}$$

$$+\frac{3q}{4}\left(\frac{\sqrt{1+\xi}+1}{2\sqrt{1+\xi}}\right)\frac{1}{\epsilon'+\frac{\epsilon}{2}(\sqrt{1+\xi}-1)},$$

где х и z — направления поляризации и распространения мощной волны, $q=2\pi N|d|^2/3\hbar$, N — плотность атомов, d — приведенный матричный элемент перехода, $\xi=2|d|^2|E|^2/3\hbar^2\varepsilon^2$ — безразмерный параметр интенсивности, E — амплитуда напряженности электрического поля, $\varepsilon=\omega_0-\omega$ — расстройка резонанса мощной волны, $\varepsilon'=\omega_0-\omega'$ — расстройка резонанса слабой волны.

Изменение поляризации зондирующей волны рассмотрим в случае, когда она распространяется против направления интенсивной волны (эксперимент был проведен именно в таких условиях). В координатной системе, ось x' которой направлена вдоль поляризации слабого поля до вхождения в среду (под углом α к оси x), связь между компонентами электрического вектора дается уравнением

$$\left(E_{x'} + \frac{E_{y'}}{\operatorname{tg} 2 \, a}\right)^2 + \left(\frac{E_{y'}}{\sin 2a \cdot \operatorname{tg} \times z}\right)^2 = (2 \, E_0 \cos \times z)^2, \tag{1}$$

где
$$E_0-$$
амплитуда слабого поля, х $=rac{w'}{2c}(\sqrt[]{arepsilon_1}-\sqrt[]{arepsilon_\perp})$. Линейная по

ляризация зондирующей волны с прохождением превращается в эллиптическую с осциллирующими значениями главных осей. Одновременно с осцилляциями происходит и колебание осей эллипса. Изменения поляризационных свойств слабой волны незначительны, когда ее поляризация при вхождении в среду почти параллельна поляризации интенсивной волны или перпендикулярна α ней. С увеличением α растет изменение поляризационных свойств, которое является наибольшим при $\alpha = 45^\circ$. Колебания эллипса в этом случае отсутствуют и эллипс поляризации принимает вид

$$\frac{E_{x'}^2}{(2E_0\cos xz)^2} + \frac{E_{y'}^2}{(2E_0\sin xz)^2} = 1.$$

Эллипс поляризации при этом пульсирует до линии, перпендикулярной к направлению при вхождении.

Для экспериментального изучения индуцированной анизотропии в парах натрия нами использован лазер на красителе с накачкой от азотного лазера $A\Lambda$ -201 (рис. 1). Лазер на красителе был собран по схеме с отражающей дифракционной решеткой. В качестве среды использовался раствор R6G в этаноле с концентрацией $5 \cdot 10^{-3}$ моль/л. Ширина генерации лазера $\Delta v \simeq 1$ см⁻¹, длительность импульса — 5 нсек. Пары натрия находились в отпаянной кювете, расположенной в печи, при помощи которой регулировалась плотность атомов натрия. Анализатор выставлялся так, чтобы на выходе можно было регистрировать параллельные и перпендикулярные к плоскости поляризации. Это давало возможность регистрации интенсивности слабого поля с повернутой плоскостью поляризации по сравнению с интенсивностью того же сигнала при отсутствии измещим по сравнению с интенсивностью того же сигнала при отсутствии измещим по сравнению с интенсивностью того же сигнала при отсутствии измещим по сравнению с интенсивностью того же сигнала при отсутствии измещим по сравнению с интенсивностью того же сигнала при отсутствии измещим по сравнению с интенсивностью того же сигнала при отсутствии измещим по сравнению с интенсивностью того же сигнала при отсутствии измещим по сравнению с интенсивностью того же сигнала при отсутствии измещим по сравнению с интенсивностью того же сигнала при отсутствии измещим по сравнению с интенсивностью того же сигнала при отсутствии измещим по сравнению с интенсивностью того же сигнала при отсутствии измещим по сравнению с интенсивностью того же сигнала при отсутствии измещения при отсутствии измещение с интенсивностью сигнала при отсутствии измещение при отсутствии измещение с интенсивностью сигнала при отсутствии измещение с интенсивностью с интен

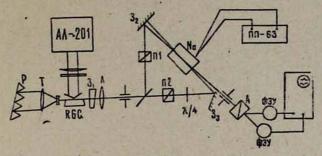
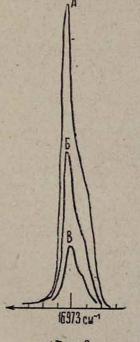
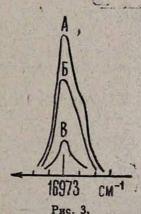
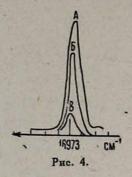



Рис. 1.


нения поляризации. Регистрация этих сигналов проводилась на двух ФЭУ с выходом на двухлучевой осциллограф С1-17.


Изменения поляризации, как и предсказывает теория, наблюдались только вблизи резонансного перехода 3 $S_{1/2} - 3P_{3/2}$. Поляризация слабой волны составляла некоторый угол с линейной поляризацией сильной волны. Нами изучена угловая зависимость резонансного изменения пробного сигнала для нескольких значений температур газа и интенсивностей сильной волны. Результаты приведены на рис. 2-4, где оси ординат соответствуют энергии перпендикулярной поляризации слабого поля в относительных единицах, а оси абсцисс-частоте лазерного излучения (в см-1): Для рис. 2 и 3 температура газа составляет 287°С, но в случае рис. 3 интенсивность сильной волны меньше в 5,5 раз. На рис. 4 интенсивность такая же, что и для рис. 2, но температура понижена до 232°С. Как и сле-

PRC. 2.

дует из теории, максимальное изменение поляризации наблюдается при $\alpha = 45^{\circ}$ (кривые A). С отклонением угла между поляризациями слабого и сильного полей от 45° наблюдается уменьшение повернутой компоненты вондирующего поля до нуля при $\alpha = 0^{\circ}$, 90°. Кривые Б и В соответству-

ют вначениям $\alpha = 30^\circ$ и $\alpha = 20^\circ$. Отношение интенсивностей для разных углов удовлетворительно согласуется с теорией.

Ереванский государственный университет

Поступила 25.VII.1978

ЛИТЕРАТУРА

- 1. В. М. Арутюнян и др. ЖЭТФ, 68, 44 (1975).
- 2. P. F. Liao, G. C. Bjorklund. Phys. Rev. Lett., 36, 584 (1976).
- 3. P. F. Liao, G. C. Bjorklund. Phys. Rev., A 15, 2009 (1977).
- 4. C. Weiman, T. W. Hansch. Phys. Rev. Lett., 36, 1170 (1976).
- 5. J. C. Keller, C. Delsart. Opt. Communs, 20, 147 (1977).
- В. Штерт. Тезисы IX Всесоюзной конференции по когерентной и нелинейной оптике, Москва, 1978, ч. II, стр. 40.
- 7. В. М. Арутюнян, А. Ж. Мурадян. Препринт ПЛРФ 77-09, Ереван, 1977.
- 8. В. М. Аругюнян, А. Ж. Мурадян. Изв. АН АрмССР, Физика, 14, 87 (1979).
- 9. В. М. Арутюнян, Г. Г. Адону. Преприят ПАРФ 78-01, Ереван, 1978.

ԻՆԴՈՒԿՑՎԱԾ ՕՊՏԻԿԱԿԱՆ ԱՆԻԶՈՏՐՈՊՈՒԹՅԱՆ ՀԵՏԱԶՈՏՈՒՄԸ ՆԱՏՐԻՈՒՄԻ ԳՈԼՈՐՇԻՆԵՐՈՒՄ

4. U. LUPAPPSAPESUE, U. J. UAPPUTSUE, U. 4. 4UPUTESUE

Գծային բևեռացված լազերային ճառագայիման դաշտում զազային միջավայրը ձեռք է բերում միառանցջանի օպտիկական հատկություններ։ Այդպիսի անիզոտրոպությունը բերում է, մասնավորապես, թույլ ազգանշանի բևեռացման փոփոխությանը։ Փոփոխության չափը կախ-ված է միջավայր մտնելիս թույլ և ուժեղ դաշտերի բևեռացումների ուղղությունների կազմած անկյունից։ Բերված են անկյունային կախվածության համար նատրիումի գոլորջիներում կատարված փորձնական հետապոտությունների արդյունջները։

INVESTIGATION OF INDUCED OPTICAL ANISOTROPY IN SODIUM VAPOURS

V. M. HARUTYUNYAN, A. J. MURADYAN, A. V. KARMENYAN

The optical anisotropy in sodium vapours induced by linearly polarized intense wave was investigated. The components of the permittivity tensor were calculated for the one-photon transition far from the absorption lines. The results of experimental investigation of the angular dependence are given.