ИССЛЕДОВАНИЕ МАЛЫХ ГРУПП ЭЛЕКТРОНОВ В МОЛИБДЕНЕ

М. А. АРУТЮНЯН, В. Ф. ГАНТМАХЕР, В. А. ГАСПАРОВ

Проведены измерения раднус-векторов эллипсоидальной части поверхности Ферми (ПФ) в трех главных сечениях с высокой точностью (0,5%) методом радиочастотного размерного эффекта на толстых образцах ($d \approx 1$ мм). На основе экспериментальных результатов на ЭВМ получено аналитическое выражение, описывающее эту ПФ. Вычисленные значения раднус-векторов совпадают с измеренными в пределах точности эксперимента.

Вблизи точек N зоны Бриллюэна молибдена (обозначения см. в [1]) расположены малые участки ферми-поверхности, имеющие форму, близкую к эллипсоидальной. Всего в зоне Бриллюэна имеется шесть таких эквивалентных «эллипсоидов», по-разному повернутых друг относительно друга. Это обстоятельство затрудняло разделение вкладов от этих поверхностей на эксперименте и снижало точность измерения их размеров. Положение дополнительно ухудшалось вследствие того, что другие участки ферми-поверхности, так называемые сфероиды, имеют близкие размеры [1].

Вместе с тем требования к точности измерений размеров ферми-поверхности с каждым годом повышаются по мере того, как растет точность теоретических расчетов. Наиболее тщательные измерения размеров «эллипсондов» вблизи точек N были выполнены в работе [2] методом де Гааз-ван Альфена (ДГВА). В настоящем сообщении приводятся результаты измерений этих же поверхностей другим методом — при помощи радиочастотного размерного эффекта (РРЭ). При этом были использованы более толстые, чем ранее [1], образцы, что существенно повышает точность измерений [3].

Методика исследований и идентификация линий РРЭ описаны в [1, 3]. Линии РРЭ записывались на образцах с отношением электросопротивлений $\gamma \approx 1 \cdot 10^5$ и толщиной $d \approx 1$ мм на частотах 3—8 *МГ* и при температуре 1,2°К. Нормали в к поверхности образцов совпадали с направлениями [100] и [110]. Использование в 5 раз более толстых образцов, чем в [1], привело к десятикратному увеличению точности измерений радиусвекторов ПФ (0,5% по сравнению с 5% в [1]) за счет несимметричного сужения линий РРЭ и уменьшения погрешности в определении толщины d [3].

Результаты измерений приведены в табл. 1 и на рисунке. В табл. 1 указаны размеры поверхностей вдоль линий NH зоны Бриллювна (ось [110], размер а), NГ (ось [011], размер b) и NP (ось [100], размер c). Наряду с нашими данными в таблице приведены также результаты исследования эффекта де Гааза-ван Альфена [2] и теоретических расчетов релятивистским методом Коринги-Кона—Ростокера (РККР) [4] с подгонкой параметров по данным [2].

Таблица 1 Размеры дырочных "эллипсоидов" ПФ молибдена (в Å ⁻¹)						
Направление	PPЭ	ДГВА [3]	PKKP [4]			
NH (a)	0,213	0,216	0,2164			
NT (b)	0,324	0,325	0,3242			
NP (c)	0,362	0,365	0,3609			

Анизотропия волновых векторов «эллипсоида» в трех взаимно перпендикулярных плоскостях симметрин: — экспериментальные точки; сплошная и штрих-пунктирная кривые соответствуют расчетной поверхности в первичкой и преобразованной системах координат, пунктирная кривая в первичной и преобразованной системах координат, пунктирная кривая—

Как видно из рисунка, реальная поверхность отличается от эллипсоида. Хотя это отличие не превышает 5%, оно четко прослеживается благодаря высокой точности измерений. Неравномерное распределение экспериментальных точек вдоль оси абсцисс обусловлено перекрытием теневых проекций «эллипсоидов» между собой и со сфероидами.

Для аналитического описания реальной поверхности мы использовали разложение радиус-вектора k в ряд по сферическим гармоникам:

$$k(\theta, \varphi)) = \sum_{l, m} \alpha_{l, m} C_{l, m}(\theta, \varphi), \qquad (1)$$

где С_{I, т} — ортонормированные сферические функции степени *l* и порядка *m*, заданные на единичной сфере:

$$C_{l,m}(\theta, \varphi) = P_l^m(\cos \theta) \cdot \cos (m\varphi), \qquad (2)$$

а \overline{P}_{l}^{m} — нормированные присоединенные полиномы Лежандра [5]. Здесь l и m — целые числа, принимающие четные значения в соответствии с сим-

475

М. А. Арутюнян и др.

метрией поверхности [6]. Для уменьшения анизотропии радиус-вектора k было использовано преобразование координат [6]

$$\dot{k_x} = ak_x, \quad \dot{k_y} = k_y, \quad \dot{k_z} = \gamma k_z, \tag{3}$$

где $\alpha \equiv b/a$, а $\gamma \equiv b/c$. Такое преобразование переводит эллипсонд в сферу раднуса b, а реальную поверхность в новую, которая отличается от сферы в меру отличия исходной поверхности от простой эллипсоидальной модели. Формулы перехода из одной системы сферических координат (k, θ, φ) в другую (k', θ', φ') приведены в [6].

Коэффициенты разложения функции $k'(\theta', \phi')$ в ряд (1) находились методом наименьших квадратов на ЭВМ «Наири-С» и приведены в табл. 2.

			and Burghaman			
α _{0,0}	α2,0	α2,2	a4,0	α _{4,2}	α4,4	
45,2036	0,0564	0,7943	0,1888	0,8153	0,2532	

Число членов ряда (1) увеличивалось до тех пор, пока разница между вычисленными и экспериментальными значениями $(k_{\rm swy} - k_{\rm sxcn})/k_{\rm skcn}$ не оказывалась меньше неточности измерений. Уже для шести членов ряда удалось получить согласие с экспериментом в пределах ± 0.5 %. Сечения восстановленной поверхности представлены на рисунке сплошной кривой в исходной системе и штрих-пунктирной — в преобразованной системе координат.

Из табл. 1 видно хорошее согласие наших данных с эффектом ДГВА [2] и теоретическими вычислениями. Следует отметить, однако, что для восстановления форм «эллипсоидов» с помощью инверсионной математической процедуры, использованной в [2], потребовалось 45 членов в разложении (1).

Таким образом, в результате проведенных исследований получено сравнительно простое аналитическое выражение, описывающее «эллипсоидальную» часть ПФ молибдена с точностью ± 0,5%.

Авторы благодарны С. В. Плющевой за предоставление слитка сверхчистого молибдена и Ю. С. Красюкову за помощь при вычислениях на ЭВМ.

Ереванский физический институт

Поступила 12.1.1978

ЛИТЕРАТУРА

- 1. В. В. Бойко, В. А. Гаспаров. ЖЭТФ, 61, 11 (1971).
- 2. J. A. Hoekstra, J. L. Stanford. Phys. Rev., B8, 1416 (1973).
- 3. V. A. Gasparov, M. H. Harutiunian. Phys. Stat. Sol. (b), 74, K107 (1976).
- 4. J. B. Ketterson et al. Phys. Rev., B11, 1447 (1975).
- 5. С. Л. Белоусов. Таблицы нормированных присоединенных полиномов Лежандра, Изд. АН СССР, М., 1956.

6. J. B. Ketterson, L. K. Windmiller. Phys. Rev., B1, 463 (1970).

476

477

ԷԼԵԿՏՐՈՆՆԵՐԻ ՓՈՔՐ ԽՄԲԵՐԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ ՄՈԼԻԲԴԵՆՈՒՄ

Մ. 2. 2ԱՐՈՒԹՅՈՒՆՅԱՆ, Վ. Ֆ. ԳԱՆՏՄԱԽԵՐ, Վ. Ս. ԳԱՍՊԱՐՈՎ

Ռաղիռնամախային չափային էֆեկտի օգնությամբ մեծ մշտությամբ (0,5%) չափված ենմոլիբդենի Ֆերմիի մակերևույթի էլիպսոիդալ մասի շառավիղ-վեկտորները երեք գլխավոր նաառւյթներում (նմուշի նաստությունը՝ d \approx 1մմ է)։ Հիմնվելով էքսպերիմենտալ արգյունքի վրա, «նաիրի» էլեկտրոնային նաշվիչ մեքենայի օգնությամբ ստացված է անալիտիկ արտասնայտություն, որը նկարագրում է տվյալ Ֆերմիի մակերևույթը։ Շառավիղ-վեկտորների չափված և նաշված արժեքները նամընկեռւմ են չափման մշտության սանմաններում։

INVESTIGATIONS OF SMALL ELECTRON GROUPS IN MOLYBDENUM

M. H. ARUTYUNYAN, V. F. GANTMAKHER, V. A. GASPAROV

Radius-vectors of the ellipsoidal Fermi surface (EFS) of Mo in all the symmetry planes were measured with high accuracy $(0,5^{\circ}/_{o})$ by means of the radio-frequency size effect in thick samples ($d \approx 1$ mm). Using the experimental data, an analitical expression is obtained for EFS. The calculated EFS is in a good agreement with themeasured one within the errors of the experiment.