ОБ ЭФФЕКТИВНОСТИ ГЕНЕРАЦИИ ВЫСОКОЭНЕРГИЧНЫХ γ-КВАНТОВ ПРИ ВЗАИМОДЕЙСТВИИ АДРОНОВ РАЗЛИЧНОЙ ПРИРОДЫ

С. В. МИТОЯН

На основе обобщения известных экспериментальных данных по экспериментам на ускорителях и в космических лучах делается заключение, что высокоэнергичные у-кванты с $E_{\infty} = 1$ Tss с одинаковой эффективностью рождаются при взаимодействии адронов различной природы, а именно, при взаимодействии высокоэнергичных пионов и пуклонов.

Экспериментальные результаты об эффективности рождения высокоэнсргичных π⁰-мезонов (γ-квантов) при взаимодействии адронов различной природы (πN , NN, N—ядро, π —ядро) представляют интерес с точки эрения выяснения механизма генерации высокоэнергичных у-квантов пионами и нуклонами и получения некоторых указаний об элементарном акте нсупругих адрон-адронных взаимодействий при высоких энергиях. Существуют разные, в большинстве своем противоречивые, соображения о механизме генерации высокоэнергичных у-квантов (у-квантов в области фрагментации налетающего адрона) пионами и нуклонами. Так, согласно заключениям работ [1, 2] высокоэнергичные у-кванты с близкими средними характеристиками одинаково эффективно генерируются и в пионных, и в нуклонных взаимодействиях при первичных энергиях $E_{\circ} > 1$ T эв. А по заключениям работ [3—5] в пионных столкновениях энергетически выделенные π^0 -мезоны (и тем самым ү-кванты) из-за различия процессов асимметрии и перезарядки в нуклонных и пионных взаимодействиях могут рождаться с большей вероятностью. Из этого следует, что при близких средних характеристиках высокоэнергичных у-квантов, рожденных во взаимодействиях первичных пионов и нуклонов, особенность столкновений по сравнению с нуклонными, если она существует, может проявиться в различных значениях эффективности генерации энергичных у-квантов.

Рассмотрим значение эффективности рождения π^0 -мезонов (в области фрагментации налетающего адрона) при энергиях взаимодействующих адронов $E_0 > 1$ T эв. Такие результаты в настоящее время дают, в основном, эксперименты в космических лучах.

1. Нетрудно показать (см. Приложение), что выражение, характеризующее отношение эффективностей генерации ү-квантов пионами и нуклонами космических лучей, имеет следующий вид:

$$J = \frac{\eta(\geqslant E_0, t) - (1-\alpha)\eta(\geqslant E_0, 0)}{\alpha \eta(\geqslant E_0, 0)},$$

где γ_i ($\geqslant E_0$, t) = Γ ($\geqslant E_0$, t)/ F_n ($\geqslant E_0$, t) — эффективность генерации π° -мезонов (γ -квантов) с энергией $E \geqslant E_0$ адронами космических лучей в 1 грамме вещества в секунду на высоте t (i c_M -2), Γ ($\geqslant E_0$, t) — спектр

генерации 7-квантов, т. е. количество 7-квантов с энергией $E > E_0$, генерируемых в 1 грамме вещества в секунду на высоте t (t с m^{-2}), F_h ($>E_0$, t)—поток адронов с энергией $E > E_0$ на высоте t; $z = F_z$ ($>E_0$, t)— $|F_h$ ($>E_0$, t)—доля пионов в потоке всех адронов космических лучей (предполагается, что доля нуклонов в потоке всех адронов космических лучей ских лучей есть $F_N/F_h = 1 - \sigma$).

Значения $\eta(\geqslant E_0,t)$ приводятся в табл. 1. Данные, относящиеся к высоте t=0 (вблизи границы атмосферы, где в потоке генерирующих частиц отсутствуют пионы), взяты из работы [7], а для t=700 г см $^{-2}$

Таблица 1

t (1 cm ⁻²)	$\Gamma (\geqslant 1 \text{ Tse, } t)$ $(\iota^{-1} \text{ ce} \kappa^{-1} \text{ cmep}^{-1})$	$\begin{cases} F (> 1 \ Too, \ t) \\ (cM^{-2} \ ce\kappa^{-1} \ cmep^{-1}) \end{cases}$	$\tau_i (\gg E_0, t)$
0	(3,4±0,4)·10 ⁻⁹	~8,8.10-6	$(3.9\pm0.5)\cdot10^{-4}$
700	(8,5±1,2)·10 ⁻¹²	(2,1±0,2)·10 ⁻⁸ [8]	$(4,0\pm0,7)\cdot10^{-4}$

получены на основе результатов работ [8, 9]. Если принять, что доля пионов с $E\geqslant 1$ T s в потоке всех адронов на высоте гор (t=700 г см $^{-2}$) составляет $\alpha>30\%$, а доля нуклонов—соответственно ($1-\alpha$) <70%, то оценка отношения эффективностей генерации γ -квантов пионами и нуклонами дает: $J=1,1\pm0,5$. Полученный результат позволяет сделать заключение, что высокоэнергичные пионы и нуклоны обладают в среднем одинаковой эффективностью генерации высокоэнергичных γ -квантов.

2. Для подтверждения сделанного заключения можно сравнить характеризующую интенсивность генерации γ -квантов величину a_0 [8], вычисленную из ускорительных данных, с данными из экспериментов в космических лучах (см. Приложение). Это сравнение проводится на основе подобия спектров ультрарелятивистских частиц в различных системах отсчета [10]. Когда скорость л-системы относительно усистемы удовлетверяет условию $v \ll v^*$, где v^* продольная скорость инклюзивной частицы в усистеме, то распределение частиц с точностью до релятивистских поправок ($\sim v/v^*$) не изменяется при переходе из усистемы влестему. А для вторичных γ -квантов указанное условие всегда выполняется.

Из той же аппроксимации инвариантных сечений рождения γ -квантов в инклюзивной реакции $pp \to \gamma + X$, рассмотренной в статье, можно оценить значение среднего парциального коэффициента неупругости $\langle K_{\gamma} \rangle$. Полученное значение $\langle K_{\gamma} \rangle \sim 0,15$ удовлетворительно согласуется с известными данными [5, 6] о $\langle K_{\gamma} \rangle$ для NN- или NC^{12} -взаимодействий.

Вышеизложенное, по-видимому, позволяет считать корректным сравчение величины a_0 , полученной из ускорительных данных (μ -система) и данных по космическим лучам (μ -система). Для получения оценки μ 0 изданных по экспериментам на ускорителях можно воспользоваться выражением

$$a_0 = \langle n_{\gamma} \rangle \langle x^{\beta} \rangle$$

где $< n_1 > -$ средняя множественность γ -квантов, рожденных в одном акте взаимодействия, х— фейнмановская переменная, $\beta \simeq 1,7$ — показатель интегрального энергетического спектра адронов в космических лучах.

Поскольку

$$\langle x^{\beta} \rangle = \frac{\int_{0}^{1} x^{\beta} \frac{d\sigma_{\gamma}}{dx} dx}{\sigma_{pp}^{tn} \langle n_{\gamma} \rangle},$$

ТО

$$a_0 = \frac{\int\limits_0^1 \, x^\beta \, \frac{d\sigma_\gamma}{dx} \, dx}{\int\limits_{\sigma_{pp}}^{in} \, dx} \cdot$$

При определенной аппроксимации инвариантного сечения рождения γ -квантов в инклюзивной реакции $pp \to \gamma + X$ [11] (х $\frac{d\sigma_{\gamma}}{dx} = 30 \times 10^{-3}$

$$imes$$
ехр $(-7z)$ мо́н для $z\geqslant 0$, 1 и х $rac{dz_{\gamma}}{dz}=44$ ехр $(-13z)$ мо́н для $0< z\leqslant 0$, 1

для импульсов первичных частиц $P_0 = 100 - 300$ и 1000 - 2000 Γ эв/с имеем

$$a_0 \simeq 3,5 \cdot 10^{-2}$$
.

Для получения оценки a_0 по результатам [9] эксперимента в космических лучах воспользуемся соотношением

$$a_0 = \frac{\beta + 1}{2} \frac{\lambda}{d} \frac{N_{\gamma} (\geqslant 1.798)}{F(\geqslant 1.798; 700 i cm^{-2})} \frac{1}{st \Omega},$$

где $\lambda\simeq 83$ г см $^{-2}$ [8] — пробег взаимодействия адронов в атмосфере, $d\simeq 34$ г см $^{-2}$ [9] — среднее количество вещества в установке, в котором происходило рождение γ -квантов, $N_{11}(\geq 1\ Tos)=80\pm 9$ — абсолютное число γ -квантов, рожденных в установке [9], $F(\geq 1\ Tos)=80\pm 9$ — абсолютное число γ -квантов, рожденных в установке [9], $F(\geq 1\ Tos)=80\pm 9$ — абсолютное число γ -квантов, рожденных в установке [9], $F(\geq 1\ Tos)=80\pm 9$ — абсолютное число γ -квантов, рожденных в установке [9], $F(\geq 1\ Tos)=80\pm 9$ — геометрический фактор установки [9]. После подстановки соответствующих данных в формулу получаем

$$a_0 \simeq (3,4 \pm 0,5) \cdot 10^{-2}$$
.

Приведенная оценка согласуется с предсказанием, полученным из ускорительных данных для *pp*-взаимодействия.

Аналогичным путем можно оценить величину a_0 на основе результатов работы [12] для одиночных адронов (представляющих в основном нуклоны) и адронов, идущих в ґруппах (среди которых присутствуют и пионы, и нуклоны) в космических лучах на высотах гор [13]. Все оценки величины a_0 приводятся в табл. 2.

M. M. M. S. C.	Таблица 2
Природа первичных адронов	a ₀
1. рр-взаимодействие (ускоритель [11])	~ 3,5.10 ⁻²
2. Взаимодойствия адрон-ядра графита (все адроны в космических лучах на высотах гор [9])	$(3,4\pm0,5)\cdot10^{-2}$
3. Взаимодействия адрон-ядра графита (адроны, идущие в груп- пах на высотах гор, — пионы и нуклоны [12])	$(3,1\pm0,8)\cdot10^{-2}$
 Взаимодействия адрон-ядра графита (одиночные адроны на высотах гор—в основном, нуклоны [12]) 	$(4,0\pm1,3)\cdot10^{-2}$

Данные табл. 2 позволяют сделать заключение, что высокоэнергичные γ-кванты с $E_{\gamma} \geqslant 1$ T эв с одинаковой эффективностью рождаются при взаимодействии адронов различной природы, а именно, при взаимодействии высокоэнергичных пионов и нуклонов. Тем не менее следует отметить, что данные экспериментов в космических лучах, относящиеся к природе первичных взаимодействующих адронов, носят косвенный характер. Для подтверждения вышеизложенных заключений необходимы прямые эксперименты с четкой идентификацией природы первичных взаимодействующих высокоэнергичных адронов.

В заключение приношу свою глубокую благодарность Н. Л. Григорову за ценные советы и полезные обсуждения.

Ереванский политехнический

Поступила 5.Х.1976

Приложение

Ожидаемое отношение эффективности генерации высокоэнергичных 7-квантов (х°-мезонов) пионами и нуклонами космических лучей.

Интенсивность генерации γ -квантов (спектр генерации γ -квантов) — число γ -квантов с энергией $E_{\gamma} \div E_{\gamma} + dE_{\gamma}$, генерируемых в 1 грамме вещества в 1 секунду на глубине t потоком адронов космических лучей, идущих в вертикальном направлении в телесном угле в 1 стерадиан, — равна

$$\Gamma(E_{\gamma}, t) dE_{\gamma} = \int_{E_{\gamma}}^{\infty} \frac{2}{E} \Pi(E, E_{0}) dE dE_{\gamma}, \qquad (1)$$

где

$$\Pi(E, E_0) dE = \frac{1}{\lambda_h} \int_{E}^{\infty} \psi(E, E_0) dE F_h(E_0, t) dE_0$$
 (2)

есть интенсивность генерации π° -мезонов с энергией E+E+dE. В выражении (2) λ_h — пробег взаимодействия адронов в атмосфере,

$$F_h(E_0, t) dE_0 = BE_0^{-(\beta+1)} dE_0$$

есть поток адронов с энергией $E_0 \div E_0 + dE_0$ на глубине атмосферы t, $\psi(E, E_0) dE$ — вероятность того, что адрон с энергией E_0 генерирует π° -мезон с энергией $E \div E + dE$.

Исходя из однородности распределения высокоэнергичных вторичных частиц можно записать

$$\psi(E, E_0) dE = \langle n_0 \rangle f(E/E_0) \frac{dE}{E_0}$$

где $< n_0>$ — среднее число π° -мезонов, генерируемых в одном акте взаимодействия, а функция $f\left(E/E_0\right)$ удовлетворяет условию нормировки

$$\int_{0}^{1} f(E/E_0) \frac{dE}{E_0} = 1.$$

Если ввести переменную $\kappa = E/E_0$, то выражение (1) можно представить в следующем виде:

$$\Gamma(E_{\gamma}, t) dE_{\gamma} = \int_{E_{\gamma}}^{\infty} \int_{E}^{\infty} \frac{2}{E} \frac{1}{\lambda_{h}} \psi(E, E_{0}) dE F_{h}(E_{0}, t) dE_{0} dE_{\gamma} =$$

$$= \frac{2}{\beta + 1} \frac{1}{\lambda_{h}} \langle n_{0} \rangle BE_{\gamma}^{-(\beta + 1)} dE_{\gamma} \int_{0}^{1} \lambda_{h}^{\beta} f(x) dx =$$

$$= \frac{2}{\beta + 1} \frac{1}{\lambda_{h}} a_{0} F_{h}(E_{\gamma}, t) dE_{\gamma},$$
(3)

где $a_0 = < n_0 > \int_0^1 x^\beta f(x) \ dx = < n_0 > < x^\beta > -$ основная характеристи-

ка интенсивности генерации 7-квантов.

Далее, предполагая, что поток адронов космических лучей на высотах гор состоит из нуклонов и пионов, выражение (3) запишем в следующем виде:

$$\Gamma\left(E_{\gamma},t\right)dE_{\gamma} = \frac{2}{\beta+1}\left\{\frac{1}{\lambda_{N}}a_{0N}F_{N}(E_{\gamma},t)dE_{\gamma} + \frac{1}{\lambda_{\pi}}a_{0\pi}F_{\gamma}(E_{\gamma},t)dE_{\gamma}\right\}.$$

Для интенсивности генерации γ -квантов с энергией $E_{\gamma} \gg E_{0}$ соответственно получим следующее соотношение:

$$\Gamma\left(\geqslant E_{0}, t\right) = \frac{2}{\beta + 1} \left\{ \frac{1}{\lambda_{N}} \alpha_{0N} \int_{E_{0}}^{\infty} F_{N}\left(E_{\gamma}, t\right) dE_{\gamma} + \frac{1}{\lambda_{\pi}} \alpha_{0\pi} \int_{E_{0}}^{\infty} F_{\pi}\left(E_{\gamma}, t\right) dE_{\gamma} \right\} =$$

$$= \frac{2}{\beta + 1} \left\{ a_{0N} \frac{1}{\lambda_N} F_N(\geqslant E_0, t) + a_{0\pi} \frac{1}{\lambda_{\pi}} F_{\pi}(\geqslant E_0, t) \right\}. \tag{4}$$

Эффективность генерации 7-квантов потоком адронов космических лучей определяется выражением

$$\eta(\geqslant E_0, t) = \frac{\Gamma(\geqslant E_0, t)}{F(\geqslant E_0, t)}.$$
(5)

Подставляя выражение (4) для $\Gamma (\ge E_0, t)$ в (5), получим

$$\eta(\geqslant E_0, t) = \frac{2}{\beta + 1} \left\{ \alpha_{0N} \frac{1}{\lambda_N} \frac{F_N}{F_h} + \alpha_{0\pi} \frac{1}{\lambda_\pi} \frac{F_\pi}{F_h} \right\}.$$
(6)

Обозначим долю пионов в потоке всех адронов космических лучей через $\alpha = F_\pi/F_h$; соответственно $F_N/F_h = 1 - \alpha$. Вблизи границы атмосферы пионы в потоке адронов отсутствуют, т. е. $\alpha = 0$, следовательно

$$\gamma(>E_0, 0) = \frac{2}{\beta + 1} \alpha_{0N} \frac{1}{\lambda_N}.$$
(7)

Для глубины атмосферы t имеем

$$\eta (> E_0, t) = \frac{2}{\beta + 1} \left\{ a_{0N} \frac{1}{\lambda_N} (1 - \alpha) + a_{0\pi} \frac{1}{\lambda_n} \alpha \right\}.$$
(8)

Из выражений (7), (8) и (3) можно найти соотношение, характеризующее отношение эффективностей (5) генерации у-квантов пионами и нуклонами:

$$J = \frac{a_{o\pi}}{a_{0N}} \frac{\lambda_N}{\lambda_{\pi}} = \frac{\eta(>E_0, t) - (1 - \alpha) \eta(>E_0, 0)}{\alpha \eta(>E_0, 0)}.$$

ЛИТЕРАТУРА

- 1. Н. Л. Григоров и др. Изв. АН АрмССР, Физика, 9, 368 (1974).
- 2. Н. Л. Григоров и др. Изв. АН СССР, сер. физ., 38, 954 (1974).
- 3. В. С. Мурзин. Сб. Школа—семинар молодых ученых по проблемам физики ва. частиц, Дубиа, 1975.
- С. А. Азимов, Т. С. Юлдашбаев. Неупругие соударения частиц большой энергии с нуклонами и ядрами, Ташкент, 1974.
- Н. С. Ангелов и др. Препринт Р1-8718, Дубна, 1975.
- Н. В. Масленникова и др. Изв. АН СССР, сер. физ., 36, 1696 (1972).
- 7. Н. Л. Григоров и др. Изв. АН СССР, сер. физ., 36, 1657 (1972).
- 8. Н. Л. Григоров и др. Частицы высоких энергий в космических лучах, Изд. Наука, М., 1973.
- 9. Н. Л. Григоров, С. В. Митоян, А. И. Савельева. Изв. АН АрмССР, Физика, 10, 84 (1975).
- Ю. П. Никитин, Н. Л. Розенталь. Теория множественных процессов, Атомиздат, М., 1976.
- 11. J. Whitmore. Phys. Reports, 10C, 275 (1975).
- 12. Н. Л. Григоров, С. В. Митоян, А. И. Савельева. Изв. АН АрмССР, Физика, 8, 93 (1973).
- 13. С. В. Митоян. Изв. АН АрмССР, Физика (в печати).

ՏԱՐԲԵՐ ԲՆՈՒՅԹԻ ԱԴՐՈՆՆԵՐԻ ՓՈԽԱԶԴԵՑՈՒԹՅԱՆ ԺԱՄԱՆԱԿ ՄԵԾ ԷՆԵՐԳԻԱՅԻ _Y-ՔՎԱՆՏՆԵՐԻ ԳԵՆԵՐԱՑՄԱՆ ԷՖԵԿՏԻՎՈՒԹՅԱՆ ՄԱՍԻՆ

Ս. Վ. ՄԻՏՈՅԱՆ

ON THE EFFICIENCY OF HIGH ENERGY 7-QUANTA GENERATION IN THE INTERACTIONS OF DIFFERENT NATURE HADRONS

S. V. MITOYAN

Based on the generalization of known data from accelerator and cosmic ray experiments, it is concluded, that γ -quanta with $E_{\gamma} \geqslant 1$ Tev are produced with the same efficiency in the interactions of different nature hadrons, viz., in high energy pion and nucleon interactions.