ВЛИЯНИЕ ОСЕВОГО ДАВЛЕНИЯ НА ПАРАМЕТРЫ КОНТАКТА МЕТАЛЛ—ПОЛУПРОВОДНИК

О. П. КАНЧУКОВСКИЙ, Л. В. МОРОЗ, В. А. ПРЕСНОВ, И. Ф. СВИРИДОВ, А. Л. ШЕНКЕВИЧ

Исследуется влияние осевого давления на электрические характеристики и параметры выпрямляющего контакта никель—кремний. Предлагается возможный механизм, объясняющий изменение высоты потенциального барьера и вольт-амперных характеристик контакта.

Диоды с барьером Шоттки (ДБШ) находят самое широкое применение во всех областях радиоэлектроники [1]. В последнее время появился ряд работ, в которых предлагается использовать ДБШ в качестве датчиков давления [2, 3]. Однако механизм влияния осевого давления на параметры ДБШ до настоящего времени окончательно не выяснен [1, 4].

Как известно, вольт-амперная характеристика (ВАХ) выпрямляющих контактов металл—полупроводник с учетом промежуточного слоя и поверхностных состояний в случае выполнения условий для диодной теории имеет вид [5]

$$I = SA^* T^2 \exp\left(-\frac{\varphi_b}{kT}\right) \left[\exp\left(\frac{eV}{nkT}\right) - 1 \right], \qquad (1)$$

где φ_b — высота потенциального барьера для контакта металл — полупроводник,

$$\varphi_b = \gamma \left(\Phi_M - \chi_s \right) + (1 - \gamma) \left(E_g - \Phi_0 \right), \tag{2}$$

ү — безразмерный коэффициент,

$$\gamma = \frac{\varepsilon_i \varepsilon_0}{\varepsilon_i \varepsilon_0 + e\delta D_s}, \qquad (3)$$

 п — параметр неидеальности, зависящий в основном от технологических факторов,

$$n = 1 + \frac{\delta \varepsilon_s \varepsilon_0}{L \left(\varepsilon_l \varepsilon_0 + e \delta D_s\right)}, \qquad (4)$$

L — толщина квазинейтрального слоя [6].

$$L = \sqrt{\frac{2\epsilon_s \epsilon_0}{eN_d} \left(V_d - V - \frac{kT}{e} \right)},$$
 (5)

 V_d — диффузионный потенциал, Φ_M — работа выхода металла, χ_s — сродство электронов полупроводника, e — заряд электрона, N_d — концентрация примесных атомов, A^* — постоянная Ричардсона для полупроводника, E_g — ширина запрещенной зоны полупроводника, Φ_0 — нейтральный уровень, отсчитываемый от потолка валентной зоны, D_s — плотность поверхностных электронных состояний на эв и на единицу

поверхности полупроводника, ε_i — диэлектрическая проницаемость промежуточного слоя, ε_s — диэлектрическая проницаемость полупроводника, *S* — площадь перехода, δ — толщина промежуточного слоя.

Следует, однако, отметить, что в реальных ДБШ обратная ветвь ВАХ не насыщается и ток растет с ростом приложенного напряжения, что связано с влиянием эффектов, происходящих на периферии, сил зеркального изображения и др. [1, 5, 6].

В настоящей работе исследовалось влияние осевого давления на выпрямляющие контакты Ni-nn+ Si (диаметр контактов — 60 мкм), изготовленные в плоскости (111). Диоды изготовлялись методом электрохимического осаждения никеля на поверхность кремния с последующим формированием меза-структуры. Использование меза-технологии позволило в значительной степени ослабить влияние эффектов, происходящих на периферии диода. Так, напряжение пробоя лежало в интервале 110÷130 в и пробой носил резкий характер (теоретически рассчитанное по теории лавинного умножения [6] напряжение пробоя имеет значение 160 в для данной концентрации $N_d = 2,5 \cdot 10^{21} \ m^{-3}$), если в окрестности пробоя не наблюдались нестабильности тока, и в интервале 50÷90 в, если последние наблюдались. Токи утечки, как правило, имели значение порядка 1 мка при обратном напряжении 50 в. Параметр неидеальности n, входящий в выражение для ВАХ, лежал в интервале 1,08÷1,4 и зависел от предварительной обработки поверхности полупроводника. Готовые диодные структуры подвергались воздействию осевого давления в направлении [111] в интервале от 0 до 12 кбар.

На рис. 1 представлены типичные зависимости прямой ВАХ от давления в полулогарифмическом масштабе. После снятия давления начальная

Рис. 1. Типичные зависимости прямой ВАХ от давления.

ВАХ восстанавливалась. Для анализа полученных зависимостей использовалось выражение О. П. Канчуковский и др.

$$\Delta \varphi_{bp} = k T \ln \left[\left(\frac{r_d}{r_c} \right)^2 \left(\exp \frac{e \Delta V}{nkT} - 1 \right) + 1 \right], \tag{6}$$

где Δφ_{bp} — изменение высоты потенциального барьера активной части диода, находящейся под давлением, r_d — радиус перехода, r_c — радиус плоского конца вольфрамового зонда;

$$\Delta V = V - \overline{V},$$

V — значение напряжения при определенном фиксированном прямом токс на экспоненциальном участке ВАХ до воздействия давления, V — значение напряжения, соответствующее тому же значению тока на экспоненциальном участке ВАХ при воздействии давления.

Выражение (6) легко получить, если приравнять токи, протекающие через диод до воздействия и при воздействии давления [7],

$$I(V) = I_1(\overline{V}) + I_2(\overline{V}), \tag{7}$$

где I(V) — ток через диод до воздействия давления, $I_1(\overline{V})$ — ток через активную часть диода, находящуюся под давлением; при этом высота потенциального барьера этой части диода определяется как

$$\varphi_{bp} = \varphi_b - \Delta \varphi_{bp}; \tag{8}$$

 $I_{z}(\overline{V})$ — ток через часть диода, не находящуюся под давлением; при воздействии давления высота потенциального барьера имеет значение 0,645 *эв*, определенное из вольт-емкостных зависимостей по аналогии с [8].

Эффективный радиус плоского конца зонда r_e во всем диапазоне измерений оставался постоянным и был равен 20 мкм (до начала измерений конец зонда расплющивался о плоскую полированную поверхность путем воздействия усилия заведомо большего, чем те, которые подавались на зонд в процессе измерений).

Анализ экспериментальных данных, проведенный с использованием выражений (6) и (8), показывает, что при увеличении давления высота потенциального барьера уменьшается линейно с градиентом 5.10⁻³ эв кбар⁻¹ (рис. 2). Как видно из рис. 1, происходит также изме-

Рис. 2. Изменение высоты потенциального барьера ф*bp* в зависимости ог. давления.

нение наклона экспоненциального участка ВАХ, что говорит об изменении параметра неидеальности, задаваемого формулой (4). Совершенно очевидно, что за изменение *n* ответственна та часть диода, которая находится под воздействием давления.

Для определения зависимости коэффициента неидеальности от давления представим прямую ветвь ВАХ ДБШ, часть поверхности которого находится под давлением, в виде

$$I = \pi r_c^2 A^* T^2 \exp\left(-\frac{\overline{\varphi_b}}{kT}\right) \exp\left(\frac{eV}{nkT}\right), \tag{9}$$

где *n* — эффективный коэффициент неидеальности, экспериментально измеренный по наклону ВАХ при воздействии давления, $\overline{\phi_b}$ — эффективная высота потенциального барьера, которую легко определить как

$$\overline{\varphi}_b = \varphi_b - e\left(\frac{V}{n} - \frac{\overline{V}}{\overline{n}}\right). \tag{10}$$

Если подставить выражение (9) с учетом (10) и выражений для $I_1(\overline{V})$ и $I_2(\overline{V})$ в (7), то можно получить выражение для параметра неидеальности n_p активной части диода, находящейся под давлением,

$$n_{p} = \frac{e\overline{V}}{kT\left(\ln\frac{B}{r_{c}^{2}} + \frac{\varphi_{bp}}{kT}\right)},$$
(11)

где

$$B = \left[r_c^2 \exp\left(\frac{\overline{\varphi}_b}{kT}\right) \exp\left(\frac{e\overline{V}}{\overline{n}kT}\right) - \left(r_d^2 - r_c^2\right) \exp\left(-\frac{\varphi_b}{kT}\right) \exp\left(\frac{e\overline{V}}{nkT}\right) \right].$$

Выражение (4) легко представить в виде

$$D_s = \frac{\varepsilon_s \varepsilon_0}{eL(n-1)} - \frac{\varepsilon_i \varepsilon_0}{e\delta}$$
 (12)

Начальную толщину промежуточного слоя δ можно определить из вольт-емкостной зависимости диода по методике [9]. Если подставить в выражение (12) вначале значение n (определенное из ВАХ рис. 1 при P=0), а затем значение n_p при P=11,9 кбар, рассчитанное по формуле (11), и принять значение δ в обоих случаях равным 100 Å (оценки показали, что при воздействии осевого давления от 0 до 11,8 кбар δ изменяется не более чем на 2%), то расчет показывает, что при увеличении давления в указанных пределах плотность поверхностных электронных состояний уменьшается от 1,8 до 0,7 · 10¹⁶ эв⁻¹ m^{-2} , т. е. более чем в два раза.

Для выяснения причин, приводящих к уменьшению высоты барьера φ_b при воздействии осевого давления проанализируем выражение (2). Известно, что ширина запрещенной зоны в кремнии (111) изменяется в зависимости от осевого давления с градиентом 3,8 · 10⁻³ эв кбар⁻¹ [10]. Однако изменения только E_g недостаточно для объяснения изменения высоты барьера φ_b , наблюдаемого экспериментально. Так как изменение толщины промежузочного слоя от давления незначительно, а плотность поверхностных электронных состояний претерпевает значительное изменение при воздействии давления, то, анализируя (2) и (3), можно предположить, что изменение высоты потенциального барьера при воздействии осевого давления связано не только с изменением E_g , но и с деформацией спектра поверхностных электронных состояний.

Действительно, известно, что в выпрямляющем контакте металл — полупроводник с тонким промежуточным слоем (в отсутствии давления) уровень нейтральности Φ_0 расположен вблизи середины запрещенной зоны [11]. Это подтверждается сравнением экспериментально определенной высоты барьера в [8], а также в настоящей работе, со значением φ_b , рассчитанным из выражения (2). Если сравнить вышеупомянутую зависимость φ_{bp} от давления (рис. 2) с величкной φ_b , оцененной по формуле (2) с учетом (11) и (12), и предположить, что с увеличением давления уровень нейтральности Φ_0 движется ко дну зоны проводимости со скоростью 0,009 *эв кбар*⁻¹, то получим достаточно хорошее совпадение теоретически рассчитанного по формуле (2) значения высоты барьера с экспериментально определенным.

На рис. З представлена типичная обратная ветвь ВАХ исследуемых диодов от давления. Как видно из представленного рисунка, обратный ток

Рис. З. Типичные зависимости обратной ВАХ меза-диода от давления.

растет с увеличением давления. При увеличении давления свыше 12 кбар, как правило, после снятия нагрузки обратная ветвь не восстанавливалась и в окрестности пробоя наблюдались нестабильности, связанные, как показали дальнейшие исследования, с возникновением дислокаций на поверхности перехода.

Представим обратную ветвь ВАХ меза-диода в виде [6]

$$j(V) = A^* T^2 \exp\left(-\frac{\varphi_b(V)}{kT}\right), \qquad (13)$$

где j(V) — плотность обратного тока в отсутствии давления, $\phi_b(V)$ — зависимость высоты потенциального барьера от напряжения при учете сил

зеркального отображения. Если учесть, что при воздействии давления высота потенциального барьера уменьшается на $\Delta \phi_{bp}$, то BAX обратно-смещенного диода при воздействии давления можно представить в виде

$$j_{p}(V) = j(V) \exp\left(\frac{\Delta \varphi_{bp}}{kT}\right).$$
(14)

На рис. 4 представлены экспериментально полученная обратная ветвь ВАХ j(V) без давления (кривая 1), теоретически рассчитанная по формуле (14) обратная ветвь ВАХ при давлении 12 кбар с учетом экспериментальной кривой j(V) (кривая 2) и экспериментально полученная обратная ветвь ВАХ при давлении 12 кбар (кривая 3).

Рис. 4. Экспериментальные (1, 3) и теоретическая (2) зависимости плотности обратного тока от напряжения при разных давлениях.

Из рисунка видно, что до напряжений порядка 50 в кривая 2 качественно соответствует кривой 3. Следовательно, можно предположить, что в этом интервале напряжений обратный ток изменяется за счет уменьшения высоты потенциального барьера. Значительный рост обратного тока при напряжении свыше 50 в нельзя объяснить только уменьшением высоты потенциального барьера. Можно предположить, что резкое увеличение обратного тока от напряжения при напряжении свыше 50 в объясняется нарушением плоскости перехода за счет образования углубления в полупроводнике под поверхностью зонда, и, следовательно, возникновением избыточного тока, текущего в окрестности периферии зонда.

В заключение следует отметить, что у диодов, в окрестности пробон которых наблюдались нестабильности, зависимость обратного тока от давления была значительно сильнее, однако ВАХ не обладали воспроизводимостью.

Одесский государственный университет им. И. И. Мечникова

Поступила 20.1.1976

ЛИТЕРАТУРА

1. В. И. Стриха, Е. В. Бузанев, И. А. Радзиевский. Полупроводниковые приборы с барьером Шоттки, М., 1974. 2. G. Kano et al. Pat. USA № 3746950, 17, VII, 1973.

- 3. K. Chino, H. Arigoshi. Japan J. Appl. Phys., 8, 502 (1969).
- 4. А. Л. Полякова. Акустический журнал, 18, 1 (1972).

5. E. H. Rhodertck. J. Phys. D. Appl. Phys., 3, 1153 (1970).

- 6. С. М. Зи. Физика полупроводниковых приборов, М., 1973.
- 7. V. L. Redeout, C. R. Growell. Appl. Phys. Lett., 10, 329 (1967).
- 8. О. П. Канчуковский и др. Электронная техника, сер. 2, № 2 (84), 72 (1974).
- 9. О. П. Канчуковский. Сб. Физические основы работы контакта металл—полупроводник с барьером Шоттки, Киев, 1975.
- 10. А.Б. Макаревич и др. Акустический журнал, 20, 443 (1974).

11. S. Kar, W. Dahlke. Sol. State Electron, 15, 869 (1972).

ԱՌԱՆՑՔԱՑԻՆ ՃՆՇՄԱՆ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՄԵՏԱՂ-ԿԻՍԱՀԱՂՈՐԴԻՉ ԿՈՆՏԱԿՏԻ ՊԱՐԱՄԵՏՐԵՐԻ ՎՐԱ

0. ղ. կԱՆՉՈՒԿՈՎՍԿԻ, Լ. Վ. ՄՈՐՈՉ, Վ. Ա. ՊՐԵՍՆՈՎ, Ի. Ֆ. ՍՎԻՐԻԴՈՎ, Ա. Լ. ՇԵՆԿԵՎԻՉ

Աշխատանքում հետաղոտվում է [111] ուղղունյամբ՝ վոլֆրամե ղոնդի օգնունյամբ ստեղծված առանցքային ճնշման աղդեցունյունը Ni-ռռ+Si մեղադիոդների ուղիղ և հակադարձ վոլտամպերային բնունագրերի վրա։

EFFECT OF AXIAL PRESSURE ON THE METAL-SEMICONDUCTOR CONTACT PARAMETERS

O. P. KANCHUKOVSKIJ, L. V. MOROZ, V. A. PRESNOV, I. F. SVIRIDOV, A. L. SHENKEVICH

Characteristics of Shottky mesa diodes under the axial pressure have been analyzed. The investigation prove the surface-state density redistribution to be one of the main causes of changes in the potential barrier height under axial pressures up to 12 kbar.