ДИСЛОКАЦИОННОЕ ПОГЛОЩЕНИЕ УЛЬТРАЗВУКА В МОНОКРИСТАЛЛАХ Ge

А. А. ДУРГАРЯН, М. А. ФАХЕМ

Методом свободных нэгибных колебаний проведено экспериментальное исследование поглощения ультразвука в кристаллах *п*-*G*е на частотах $1 \div 6 \ \kappa_{12}$ в температурном интервале $20 \div 500^{\circ}$ С. Обнаружены три релаксационных максимума с энергией активации 0,64, 0.81 и 1,04 *se* соответственно при температурах 180°, 320° и 420°С, которые объясняются с помощью модели дислокационных перегибов. Из экспериментальных результатов вычислены концентрация точечных дефектов на дислокациях ($C \simeq 2 \cdot 10^{13} \ cm^{-3}$), коэффициент диффузии точечных дефектов вдоль дислокаций ($D \simeq 3 \cdot 10^{-6} \ cm^2/се\kappa$) и коэффициент демпфирования ($B \simeq 2 \cdot 10^{-2} \ дин \ cek \ cm^{-2}$). Исследована также ориентационная зависимость поглощения ультразвука в кристаллах *Ge*.

Движение дислокаций в кристаллах с ковалентными связями значительно затруднено вследствие высокого барьера Пайерлса. Это и является одной из причин отсутствия единой точки зрения на характер поглощения ультразвука в этих кристаллах, несмотря на наличие большого числа теоретических [1—3] и экспериментальных [4—11] работ.

Кесслер [4] обнаружил релаксационный пик с энергией активации 1,1 эв в кристаллах Ge при 380°C на частоте 40 кгу и объяснил его миграцией вакансий в поле напряжения дислокаций. Аналогичный пик на частоте 10 ги получен Александровым и др. [5]. Сузуки связывает этот пик с перераспределением вакансий, сопровождающим движение перегибов [6]. Аналогичные результаты получены в работах [7, 11], где наблюдавшиеся максимумы поглощения ультразвука связываются с образованием и движением перегибов на дислокациях. Саутгейт [8] обнаружил два пика поглощения ультразвука в кристаллах Ge с энергией активации ~ 1,1 эв на частоте 100 кгц при температуре 470°С, обязанный электронам, и при T=770°C, связанный с диффузией кислорода. Жмудский и др. [9] на частоте 2 ги наблюдали монотонное возрастание поглощения ультразвука в температурном интервале 20÷500°С и объясняли его колебанием дислокаций в поле точечных дефектов. В работе [10] в кристаллах Ge в области 80÷400°К также не обнаружено максимумов поглощения ультразвука. обусловленных дислокациями.

Движение дислокаций и дислокационное поглощение ультразвука в ковалентных кристаллах описывается с помощью моделей резких перегибов [1], точек торможения [2] и струнной модели [3]. Уточнение и развитие этих моделей, а также выяснение характера поглощения ультразвука в этих кристаллах возможно лишь при дальнейшем экспериментальном исследовании релаксационных процессов в кристаллах со структурой алмаза.

Целью настоящей работы является выяснение характера релаксацислного поглощения ультразвука в монокристаллах Ge в килогерцевом диалазоне частот в области температур 20÷500°С.

Методика эксперимента

Поглощение ультразвука и модуль Юнга в кристаллах Ge (марки 2ЭС 15.III.26 с удельным сопротивлением $\rho \simeq 15$ ом см, плотностью дислохаций $N \simeq 6 \cdot 10^{\circ}$ см⁻²) определялись методом затухания свободных изгибных колебаний [12] с погрешностью, не превышающей ±1%. Измерения проводились в интервале частот 1÷6 кгц в амплитудно-независимой области поглощения ультразвука.

Скорость нагрева и охлаждения образцов не превышала 0,7 град/мин. Деформация образцов Ge осуществлялась методом четырехточечного изгиба при температуре 750°С. Плотность дислокаций N менялась от исходной $\simeq 6 \cdot 10^3$ до $\simeq 10^6$ см⁻². Степень пластической деформации определялась отношением величины остаточного перегиба к длине образца. Образцы вырезались по направлению [111] в виде брусков длиной 80÷60 мм и сечением от 2×6 до 7×6 мм².

Результаты эксперимента и их обсуждение

На кривой температурной зависимости поглощения ультразвука в кристаллах Ge на частоте 4,23 кгу наблюдались три максимума поглощения при температурах 180°, 320° и 420°С (рис. 1). При этом направление колебаний составляло угол 13,8° с нормалью к плоскости (112).

Рис. 1. Температурная зависимость поглощения ультразвука (△) и модуля упругости (Е) в монокристаллах Ge на частоте 4230 гу: ● — при направлении колебаний под углом 13,8° к направлению нормали к плоскости (112); ○ — при направлении колебаний под углом 13,8° к направлению [110].

При изменении направления колебаний на 90°, т. е. когда колебания происходили под углом 13,8° по отношению нормали к плоскости (110), оставаясь в плоскости (111), пик P_1 при T = 180°C полностью исчезал, а второй (P_2) и третий (P_3) пики несколько уменьшались и смещались в область высоких температур. Смещение пика в область высоких температур обусловлено увеличением частоты измерения. Учитывая монорелаксационность этих пиков, из графика логарифмической зависимости частоты пика от обратной температуры были рассчитаны энергия активации процессов (E_a) и частотный фактор (f_a) (рис. 2).

Энергия активации (E_6) рассчитывалась также по формуле Верта [13] (см. таблицу)

$$E_6 = k T \ln \frac{k T}{h f},$$

где k — постоянная Больцмана, h—постоянная Планка, f—частота пика, T—температура пика.

1 1 1 1 1 1 1			Габлица	
	P1	P ₂	Pa	
$f_0 (ce\kappa^{-1})$	6,5·10 ¹⁰	3,5·10 ¹⁰	1,4.1011	
Ea (98)	0,64	0.81	1,04	
E 6 (98)	0,7	1	1,2	

Как видно из таблицы, результаты обоих расчетов в пределах ошибок совпадают. После химической полировки глубиной 150 мкм в смеси $(HF+3HNO_3)$ высота пиков P_1 и P_3 не изменялась, а высота второго пика значительно уменьшилась. Отжиг при $T=650^{\circ}$ С в течение 21 часа привел к нсчезновению пиков P_1 и P_3 и значительному увеличению высоты пика P_2 . Влияние различной степени деформации (0,1%, 1,1% и 2,2%) на поглощение ультразвука в области пиков показано на рис. 3. Исходя из того, что пик P_1 (рис. 3a) исчезает после отжига и вновь наблюдается после деформации, можно считать, что этот пик имеет дислокационное происхождение. Из ориентационной зависимости поглощения ультразвука следует, что пик P_1 связан с дислокациями, лежащими в плоскости (111) и ориентированными по направлению [110]. Кроме того, из экспериментального определения плотности дислокаций в плоскости (110) по ямкам травления было получено число, примерно в 10 раз большее, чем для других плоскостей.

Рис. 3. Температурная зависимость поглощения ультразвука (Δ) ь области пиков: (a) — для пика P_1 ; (б) — для пика P_2 ; (e) — для пика P_3 : \bigcirc — после отжига при температуре 650°С в течение 21 часа; \triangle — после деформации (0,1°/₀); — после деформации (1,1°/₀); — после деформации (2,2°/₀).

Пики поглощения ультразвука в кристаллической решетке типа алмаза, связанные с легким движением дислокационных перегибов, наблюдаются в кристаллах Ge при низких температурах и имеют энергию активации 0,07 эв [14]; при высоких температурах ($\simeq 1000^{\circ}$ C) наблюдаются пики поглощения с энергией активации $\simeq 1,6$ эв, связанные с образованием парных перегибов [15]. Энергия активации 0,64 эв для пика P₁ больше энергии легкого движения перегибов (0,07 эв), но меньше энергии, необходимой для образования парных перегибов, и близка к энергии активации движения геометрических перегибов [11, 12]. Изменение высоты пика связано с изменением плотности дислокаций и перегибов при деформации и отжиге.

С учетом монорелаксационности процесса и предположения о движенин геометрических перегибов время релаксации можно записать в виде [1, 11]

$$\tau = \frac{L^2}{\pi^2 \nu \, l^2} \exp \frac{E}{kT},$$

где у — частота Дебая (10¹³ сек⁻¹, L — длина дислокационного сегмента, l — длина геометрического перегиба, E — энергия активации, $\tau_0 = \frac{L^2}{\pi^2 \gamma l^2}$ — характеристическое время процесса. Полагая L = 50 l, получаем значение $\tau_0 = 2,5 \cdot 10^{-11}$ сек, или частотный фактор $f_0 \simeq 4 \cdot 10^{10}$ сек⁻¹, что совпадает с частотным фактором, полученным из условия $\omega \tau = 1$ для пика P_1 (см. таблицу).

Другой выбор длины сегмента по сравнению с [11], где принимается $L = 10 l \ (\rho \simeq 5 \ om \ cm, \ N \simeq 10^4 \ cm^{-2})$, обусловлен тем, что в настоя-

щей работе использовались более совершенные кристаллы ($\rho=15 \text{ om } cm$, $N=6\cdot10^3 \text{ cm}^{-2}$). При малых наклонах дислокаций относительно долины Пайерлса модель перегибов и струнная модель К. Г. Л. должны дать одинаковые результаты [12]. При втом условии учитывая, что высота пика $\Delta_{\max}=1,7\cdot10^{-5}$, плотность дислокаций $N'\simeq 6\cdot10^3 \text{ cm}^{-2}$, мо дуль сдвига Ge есть $6\cdot10^{11}$ дин/см², а также $\omega\tau=1$, $\tau=3\cdot10^{-5}$ сек, для длины сегмента дислокации получаем $L=1,2\cdot10^{-3}$ см. При такой длине дислокации относительно долины Пайерлса ссставляет угол $\simeq 2^{\circ}$. Для кристаллов Ge с плотностью дислокаций $N\simeq 5\cdot10^6 \text{ cm}^{-2}$ получено, что $L=7,9\cdot10^{-5}$ см [16], а при $N=10^5 \text{ см}^{-2} - L=10^{-4} \text{ см}$ [11], откуда следует, что в кристаллах Ge при плотностях дислокаций $N \ll 10^5 \text{ см}^{-2}$ имели $L=1,2\cdot10^{-3}$ см. При этих условиях значение L=50l является приемлемым.

Химическая полировка глубиной 150 мкм уменьшает высоту пика P_2 , а отжиг при $T = 650^{\circ}$ С в течение 21 часа приводит к увеличению его высоты (рис. 36). Деформация (0,1%) при $T = 750^{\circ}$ С в течение 7 часов и последующее охлаждение со скоростью 5 *град/мин* приводят к исчезновению пика P_2 . При повторных деформациях (1,1% и 2,2%) и охлаждении со скоростью 20 *град/мин* пик возрастает соответственно на 20% и 30%. Известно [11], что шлифовка и последующий отжиг при средних температурах (500÷600°С) приводят к увеличению плотности дислокаций в поверхностном слое. Вагатсома и др. рентгенотопографическим методом показали, что отжиг деформированных кристаллов при средних температурах приводит к персраспределению дислокаций, которое обязано движению и аннигиляции перегибов на дислокациях [11]. Такие явления наблюдаются также в деформированных кристаллах при медленном охлаждении. По-видимому, такое увеличение плотности дислокаций в приповерхностном слое и привело к появлению пика после отжига при 650°С.

Деформация $\simeq 0,1\%$ при 750°С и последующее медленное охлаждение, эквивалентное отжигу, привело к исчезновению пика P_2 . Действительно, отжиг при 750°С без нагрузки также приводит к исчезновению пика P_2 . Увеличение высоты пика при деформациях обусловлено увеличением плотности дислокаций (до 10° см⁻²) и перегибов.

Энергия активации пика P_2 (E=0,81 эв) составляет почти половину энергии активации движения дислокаций или половину энергии образования парных перегибов в кристаллах Ge [15], и это дает основание предполагать, что пик P_2 обязан образованию моноперегибов на дислокациях, расположенных в приповерхностном слое кристаллов Ge.

Пик P_s исчезает после отжига при температуре 650°С. Деформация (0,1% и 1,1%) при температуре 750°С в течение 7 часов оказывается недостаточной для возникновения этого пика (рис. 3в). После этих деформаций наблюдается лишь возрастание фона поглощения ультразвука в температурной области этого пика. Пик вновь появляется после деформации $\simeq 2,2\%$ при T = 780°С в течение 21 часа при последующем охлаждении со скоростью 20 град/мин. Химическая полировка глубиной 150 мкм не влияет на высоту пика. Наблюдается незначительная зависимость пика от ориентации, т. є. при изменении направления колебаний в плоскости (111) от направления [112] к направлению [110] высота пика уменьшается незначительно. На основании этого можно предположить, что пик P_3 связан с объемными дислокациями, ось которых направлена по [111] или имеет составляющие в этом направлении. Согласно модели точек торможения [2], максимум поглощения ультразвука пропорционален плотности перегибов и расстоянию между точками торможения (ступеньки, вакансии, примеси). По-видимому, при деформациях $\simeq 0,1\%$ и $\simeq 1,1\%$ скорость увеличения плотности точек торможения больше, чем скорость образования перегибов, т. е. для пика P_3 при этих деформациях больше сказывается влияние отжига, чем деформации, и вследствие этого наблюдается только увеличение фона поглощения ультразвука. Энергия активации этого пика составляет 1эв, а частотный фактор $f_0 \simeq 1,4\cdot10^{11}$ сек⁻¹.

Кесслер [4] на частоте 40 кгу и $T = 380^{\circ}$ С и Калзечи и др. [7] на частоте 2÷5 кгу и $T = 380^{\circ}$ С получили пик поглощения в кристаллах Ge с энергией активации $\approx 1,1$ эв. Кесслер связывает полученный пик с миграцией вакансий в поле напряжения дислокаций. Сузуки и Калзечи [6, 7] считают, что полученный Кесслером пик связан с перераспределением точечных дефектов на дислокациях.

Из теории взаимодействия дислокаций с точечными дефектами [4, 7] для максимума поглощения ультразвука следует выражение

$$\Delta_{\max} = 10^{-10} N L^4 C G k T, \qquad (1)$$

где $C \simeq 4,5 \cdot 10^{22} \exp\left(-\frac{E}{kT}\right)$ – концентрация точечных дефектов

G — модуль сдвига, а для времени релаксации процесса —

$$\tau_0 = 10^{-1} \left(\frac{\gamma_0^3}{A}\right) \left(\frac{kT}{D}\right),\tag{2}$$

где $A = \frac{4}{3} \left(\frac{1+n}{1-n} \right) G b \eta^3$ — постоянная взаимодействия примесь-дис

локация, $v_0 \simeq b \simeq 4 \cdot 10^{-8}$ см, D — коэффициент диффузии в Ge, n — коэффициент Пуассона, ρ — радуис атома и $(1 + \eta)\rho$ — радиус точечного дефекта. Используя эти уравнения и принимая, что равновесная концентрация вакансий при температуре пика есть $C \simeq 10^{10}$ см⁻³, а коэффициент взаимодействия $A \simeq 10^{19}$ эрг см, Кесслер для температуронезависимого коэффициента диффузии получил $D_0 = 10^{-4}$ см²/сек, что на несколько порядков меньше значения коэффициента диффузии для вакансий [17].

Из уравне ний (2) для пика P_3 с учетом значений $f_0=1,4\cdot10^{11}$ сек⁻¹, $T=700^{\circ}$ К, $\Delta_{max}=1,6\cdot10^{-5}$, $L=1,3\cdot10^{-3}$ см и $A=3,4\cdot10^{19}$ эрг см получено $C=2\cdot10^{13}$ см⁻³. Как и следовало ожидать, полученное значение для концентрации точечных дефектов вокруг дислокаций оказывается много больше, чем равновесная концентрация дефектов в кристалле ($C \simeq 10^9 \ cm^{-3}$), полученная из соотношения $C = 4,5 \cdot 10^{22} \times \exp\left(-\frac{E}{kT}\right)$, где $E \simeq 2$ эв — энергия образования вакансий.

Для коэффициента диффузии из выражения (2) при $\tau_0 \simeq 7 \cdot 10^{-12}$ сек получается значение $D = 2,5 \cdot 10^{-6}$ см²/сек при $\eta = 0,01$ и $D = 2,5 \times 10^{-7}$ см²/сек при $\eta = 0,1$, т. е., как и следовало ожидать, коэффициент диффузии увеличивается с уменьшением радиуса точечного дефекта.

Расчет температуронезависимого коэффициента диффузии по Брейлсфорду [1] $\left(D_0 = \frac{2 \, l^2 f_0}{\pi}\right)$ дает значение $D_0 = 51,5 \, c \, m^2/ce\kappa$ при средней длине перегиба $l = 2,4 \cdot 10^{-5} \, cm$, а для коэффициента диффузии при температуре пика P_3 с энергией активации $\simeq 1$ эв получается значение $D = 3,1 \cdot 10^{-6} \, cm^2/ce\kappa$. Близкий результат для коэффициента диффузии вдоль дислокаций ($D = 1,5 \cdot 10^{-6} \, cm^2/ce\kappa$) получается также при использовании метода расчета Ямафуджи [18]. Полученные результаты для концентрации точечных дефектов и коэффициента диффузни вдоль дислокаций дают основание предполагать, что пик P_3 обусловлен перераспределением точечных дефектов на перегибах вдоль дислокаций.

Эначение ковффициента диффузии (10⁻⁴ см²/сек), полученное Кесслером, по-видимому, нужно отнести к температурозависимому ковффициенту диффузии, а несколько большее значение D связано с повышенной плотностью дислокаций и концентрацией примесей.

Расчет коэффициента демпфирования (B) для пика P_3 по Лейбфриду [19] дает значение $4 \cdot 10^{-4}$ дин сек см⁻², а из условия $B = \frac{kT}{b^3 v_D}$ [7], где $v_D = 10^{13} \, сек^{-1}$ —частота Дебая, получается значение 2,2 · 10⁻⁴ дин сек см⁻². Из значения максимума поглощения P_3 по К. Г. Л. [12] было получено 1,6 · 10⁻² дин сек см⁻².

Как видно из полученных результатов, теоретическое значение коэффициента демпфирования меньше, чем полученное из экспериментальных данных. Такое расхождение, наблюдаемое и для металлов, обусловлено, по-видимому, некоторыми микроскопическими параметрами (концентрацией примесей, углом между действующей силой и направлением дислокаций и др.), которые не учитываются при расчете.

Линейный спад модуля упругости (рис. 1) до 370°С связан с ангармонизмом колебаний решетки [12]. Незначительное отклонение от линейности выше 370°С обусловлено термоактивационными процессами.

Ереванский государственный

университет

Поступила 26.VI.1976

ЛИТЕРАТУРА

- A. D. Bratlsford. Phys. Rev., 122, 778 (1961); 128, 1033 (1962); 137A, 1562 (1965);
 J. Appl. Phys., 36, 3941 (1965).
- 2. S. Ninomiya, R. Thomson, F. Carcia-Moliner. J. Appl. Phys., 35, 3607 (1964).
- 3. A. Seeger. Phil. Mag., 1, 651 (1956).

- 4. J. O. Kessler. Phys. Rev., 106, 646 (1957).
- 5. А. Н. Александров и др. ФТТ, 10, 2871 (1968).
- 6. H. Suzuki. J. Phys. Soc. Japan, 18, Suppl. 1, 182 (1963).
- F. Calzechi, P. Gondi, S. Montovani. Nuovo Cim., B54, 165 (1968); J. Appl. Phys., 40, 4798 (1959).
- 8. P. D. Southgate. Proc. Phys. Soc., 76, 385, 398 (1960).
- 9. А. З. Жмудский и др. Ученые записки ЕГУ, 1, 55 (1969).
- 10. W. L. Haworth, R. Mottas, H. K. Birnbaum. J. Appl. Phys., 43, 3658 (1972).
- 11. K. Ohori, K. Sumino. Phys. Stat. Sol. (a), 9, 151 (1972).
- 12. А. А. Дургарян, М. А. Фахем. Изв. АН АрмССР, Физика, 11, 116 (1976).
- 13. А. Н. Александров, В. С. Мордюк. Внутреннее трение и физические свойства тугоплавких металлов, Саранск, 1963, стр. 31.
- 14. L. P. Khiznichenko et al. Phys. Stat. Sol., 21, 805 (1967).
- 15. R. Labuch. Phys. Stat. Sol., 10, 645 (1965).
- 16. A. Granato, R. Truell. J. Appl. Phys., 27, 1219 (1956).
- 17. H. Letow, N. Portnoy, L. Shifkin. Phys. Rev., 102, 636 (1956).
- K. Yamafuji, Ch. Bemer. J. Appl. Phys., 36, 3283 (1965); см. также Актуальные вопросы теории дислокаций, Изд. Мир. М., 1968, стр. 115.
- 19. G. Z. Leibfreid. Phys. Bd., 127, 344 (1950).

ՈՒԼՏՐԱՁԱՅՆԻ ԴԻՍԼՈԿԱՑԻՈՆ ԿԼԱՆՈՒՄԸ Ge-Ի ՄՈՆՈԲՅՈՒՐԵՂՆԵՐՈՒՄ

Ա. Հ. ԴՈՒՐԳԱՐՅԱՆ, Մ. Ա. ՖԱՀԵՄ

Աշխատանքում կատարված է ուլարաձայնի կլանման փորձնական ուսումնասիրունյունը Ge բյուրեղներում 1.-6 կնց Հաճախունյունների և 20.-500°С չերմաստիճանային տիրույններում։ Հայտնարերված են երեր ռելարտացիոն մարսիմումներ՝ 180°, 320° և 420°С չերմաստիճաններում Համապատասխանաբար 0,64, 0,81 և 1,04 էվ ակտիվացման էներգիալով, որոնք բացաարվում են դիսլոկացիոն ծովածըների մոդելով։ Փորձնական արդյունըներից ելնելով Հայվված է դիսլոկացիաների վրա կետային դեֆեկտների խաունյունը (С \simeq 2.10¹³ иմ), դիսլոկացիայի երկայներով դիֆուդիայի գործակիցը (D \simeq 8.10⁻⁶ uմ2/վբկ) և արդելակման B գործակիցը (B \simeq 2.10⁻²դին վբկ uմ-2): Ge թյուրեղներում ուսումնասիրված է նաև ուլարաձայնի կլանման օրիենտացիոն կախումը։

DISLOCATION ABSORPTION OF ULTRASOUND IN G2 SINGLE CRYSTALS

A. H. DURGARYAN, M. A. FAHEM

Using the free flexural oscillation method the absorption of ultrasound in Ge single crystals at resonance frequencies $1\div 6$ KHz was experimentally investigated in the temperature range $20\div 500^{\circ}$ C. Three relaxation peaks with activation energies 0.64, 0.81 and 1.04 ev are observed at temperatures 180, 320 and 420°C respectively. These peaks are explained in terms of the dislocation kink model. On the basis of experimental results the concentration of point defects around dislocations $C \simeq 2 \cdot 10^{13}$ cm⁻³, their diffusion coefficient along dislocations $D \simeq 3 \cdot 10^{-6}$ cm² sec⁻¹ and the damping coefficients $B \simeq 2 \cdot 10^{-2}$ dyn sec cm⁻² have been calculated. The dependence of ultrasound absorption in Ge crystals on the crystal orientations was investigated as well.