ОБ ИНФРАКРАСНОЙ АСИМПТОТИКЕ И КАЛИБРОВОЧНЫХ ПРЕОБРАЗОВАНИЯХ ФУНКЦИИ ГРИНА

Г. Ю. КРЮЧКОВ

Показано, что для функции Грина заряженной частицы учет вклада мягких фотонов эквивалентен, грубо говоря, ее калибровочным преобразованиям и приводит к замкнутому уравнению для функции Грина. Решение уравнения для значений импульсов, близких к массовой поверхности, имеет известную инфракрасную особенность.

1. Введение

Изучение проблемы инфракрасных расходимостей, в частности, вычисление инфракрасной асимптотики функции Грина заряженной частицы проделано давно и разными авторами (для скалярных частиц—в [1], для электрона—в [2]). Однако в последнее время в связи с развитием новой последовательной трактовки этой проблемы, более адекватной современному аппарату квантовой теории поля (см. [3—5]), интерес к этим вопросам возрос.

Известно, говоря для определенности о функции Грина электрона

$$G(p) = \int e^{-lpx} < 0 | T(\psi(0)\overline{\psi}(x)) | 0 > d^4x, \qquad (1)$$

что при $|p^2-m^2|\ll m^2$ (m- масса электрона) функция Грина вместо простого полюса имеет точку ветвления

$$G(p) \simeq G_0(p) (m^2/(p^2-m^2))^3, \quad G_0(p) = \frac{p+m}{p^2-m^2}$$
 (2)

 $\left(s$ фейнмановской калибровке $\beta = \frac{\alpha}{\pi}, \quad \alpha = e^2/4\pi\right)^*$.

Эта дополнительная особенность может быть устранена калибровочными преобразованиями функции Грина [8]

$$\frac{d}{d\xi} G(x; \xi) = (\lambda(0) - \lambda(x)) G(x; \xi), \tag{3}$$

где

$$\lambda(x) = \frac{i\alpha}{4\pi^3} \int e^{-ikx} \frac{d^4k}{(k^3)^2}$$

Здесь приведена дифференциальная форма преобразования, более удобная при переходе к фурье-компонентам, для которых она принимает вид

Формула (2) получена в [2] путем решения приближенных интегральных уравнений для функций Грина, а также в модели Блоха-Нордсика методом функциональногоинтегрирования [6] и методами ренормализационной группы (см., напр., [7]).

$$\frac{d}{d\xi} G(p; \xi) = \frac{i\alpha}{4\pi^3} \int \left[G(p; \xi) - G(p - k; \xi) \right] \frac{d^4k}{(k^2)^2}, \quad (3a)$$

 $G(p; \, \xi)$ — значение функции Грина электрона, вычисленное є помощью фотонной функции Грина

 $D_{\mu\nu}(k) = \delta_{\mu\nu} \frac{d(k^2)}{k^2} + \xi \frac{k_{\mu}k_{\nu}}{(k^2)^2}$

 ξ —параметр калибровки, G(p) соответствует случаю фейнмановской ка-

либровки — $\xi = 0$.

Основная цель работы — показать, что такая ситуация не случайна. Для этого предлагается простой способ вычисления (2), основанный на решении уравнения, аналогичного (3a). Из результатов видно, что учет вклада мягких фотонов, приводящих при $|p^2-m^2| \ll m^2$ к инфракрасной структуре, эквивалентен, грубо говоря, калибровочным преобразованиям функции Грина заряженной частицы. Для этой цели используются полученные в [4, 5] операторы ψ_{as} (x)—асимптотических при $t \to -\infty$ состояний заряженных частиц. Другой способ основан на диаграммной технике.

2. Асимптотическая функция Грина

Воспользуемся стандартной процедурой, согласно которой в окрестности $p^2 \sim m^2$ функция Грина определяется матричными элементами на массовой поверхности операторов $\psi_{as}(x)$. При этом сингулярности G(p) в окрестности $p^2 \sim m^2$ в координатном пространстве соответствует асимптотика G(x) при $t \to \infty$ [9, 10]

$$\psi_{as}(x) = \frac{1}{(2\pi)^{3/2}} \int \left(\frac{m}{p_0}\right)^{1/2} (b_p^s u_p^s e^{-ipx} + d_p^s v_p^s e^{ipx}) V(p, t) d^3p, \quad (4)$$

$$V(p, t) = \exp\left\{-\frac{e}{2\pi^{3/2}} \int \frac{d^3k}{\sqrt{2 k_0}} f(k) \left(a_{\mu}(k) \frac{p_{\mu}}{pk - i\epsilon} e^{-i\frac{kp}{p_0}t} - \frac{e^{-i\frac{kp}{p_0}t}}{pk + i\epsilon} e^{-i\frac{kp}{p_0}t}\right)\right\}$$
(5)

(f(k) — обрезающая функция, f(0) = 1, $f(\infty) = 0$).

Отсылая за подробностями к [4, 5], отметим, что (4) отличается от свободного фермионного поля лишь множителем V(p,t), который определяется взаимодействием низкочастотной части $(k \ll m)$ квантованного электромагнитного поля с классическим током точечного заряда e с трае кторией $x_{\mu}(\tau) = p_{\mu}(px/m^2)$ ($\tau = px/m^2$ —собственное время).

Подстановка (4) и (5) в (1) и усреднение по фотонному вакууму дает

$$G(x) = \int d^4p \, G_0(p) \, e^{-ipx} \exp \{ \varphi_p(t) \}, \tag{6}$$

где

$$\varphi_{p}(t) = \frac{i\alpha}{4\pi^{3}} \int \frac{d^{4}k}{k^{2} + i\varepsilon} |f(k)|^{2} \frac{m^{2}}{(pk)^{2}} \left(e^{-i\frac{kp}{p_{0}}t} - 1\right). \tag{7}$$

Функция (7) встречалась уже в ранних исследованиях, например, в [6], где для ее вычисления конкретизировался способ ковариантного обрезания. В нашем рассмотрении, однако, несущественный для инфракрасной асимптотики вклад больших частот $k\gg m$, а вместе с тем и перенормировочные эффекты не учитываются (их учет приводит к множителю порядка $0(1+e^2)$ в функции Грина [2, 9]). По этой причине далее обрезающая функция в (7) будет опущена.

Для выделения вклада области $p^2 \sim m^2$ в асимптотику G(x) заметим, что при больших |t| зависимость $\varphi_p(t)$ от импульса с логарифмической точностью выпадает, так как $\varphi_p(t) \simeq \alpha/\pi \ln{(m^2/p_0t)}$ [6]. Ковариантным образом этого можно достичь, заменяя траекторию $x_\mu(\tau) = p_\mu(t/p_0)$ (при движении по классической траектории $px = p_0t - -px = p_0t - p^2/p_0t = m^2/p_0t$) не зависящей от p переменной x_μ .

Далее, формально дифференцируя (6) по α , с логарифмической точностью получаем уравнение, аналогичное (3)*,

$$\frac{dG(x)}{da} = (\varphi(0) - \varphi(x)) G(x), \tag{8}$$

где

$$\varphi(x) = -\frac{i}{4\pi^3} \int \frac{d^4k}{k^2} \frac{m^2}{(pk)^2} e^{-ikx}.$$

Переходя к фурье-компонентам, окончательно получаем

$$\frac{dG(p)}{da} = -\frac{i}{4\pi^3} \int [G(p) - G(p-k)] \frac{m^2}{(pk)^2} \frac{d^4k}{k^2}.$$
 (8a)

Сходство уравнений (3) и (8) становится физически более ясным, если параметр § в (3) трактовать аналогично с—как константу взаимодействия с продольной частью фотонного пропагатора.

3. Использование диаграммной техники

Уравнение (8a) можно получить и более стандартным путем, не прибегая к решениям (4) и (5). Для этого будем исходить из функции Грина (1). записанной в форме N-упорядочения операторов электромагнитного поля

$$G(x) = \langle 0 | T(\psi_{ln}(0) \overline{\psi}_{ln}(x) \exp(-2\pi \alpha \int_{\mu}^{ln} (1) J_{\nu}^{ln}(2) D_{\mu\nu}(12) d(1) d(2))) | 0 \rangle,$$

которую далее дифференцируем по а**

^{*} Здесь дифференцирование по параметрам α и ξ носит формальный характер, позволяющий переходить к фурье-компонентам. В квантовой теории, однако, существует последовательный подход [11], основанный на зволюции системы при изменении заряда.

^{**} Аналогичные соотношения получены в [12]; они также были использованы в [13] при формулировке простого метода вычисления дважды логарифмических асимптотик амплитуд рассеяния.

$$\begin{split} \frac{dG\left(\mathbf{x}\right)}{da} &= -2\pi \int <0 \,|\, T\left(\psi\left(0\right)\,\overline{\psi}\left(\mathbf{x}\right)\,f_{\mu}\left(1\right)\,f_{\nu}\left(2\right)\right) |\, 0>D_{\mu\nu}\left(12\right)\,d\left(1\right)\,d\left(2\right), \\ D_{\mu\nu}\left(\tau\right) &= \frac{i\hat{o}_{\mu\nu}}{(2\,\pi)^4} \int \,e^{-i\,k\tau}\,\frac{d^4k}{k^2+i\varepsilon}\,, \end{split}$$

 $J_{\mu}^{in}(x)$ — оператор электромагнитного тока, ψ_{in} — фермионного поля в in-представлении.

Введя вершинные части $\Gamma(p, p-k; k)$ и переходя в импульсное пространство, получаем

$$\frac{dG(p)}{d\alpha} = -\frac{i\alpha}{4\pi^3} G(p) \int \Gamma_{\mu}(p, p-k; k) G(p-k) \Gamma_{\mu}(p-k, p; k) \times \frac{d^4k}{k^2 + i\epsilon} G(p).$$
(9)

Мы упростим правую часть (9), воспользоваешись тождеством Уорда $G(p) - G(p-k) = G(p-k) \Gamma_{\mu}(p, p-k; k) G(p) k_{\mu}.$ (10)

Как видно из дальнейшего, это подтверждается и вычислениями по теории возмущений, при $|p^2-m^2|\ll m^2$ основной, логарифмический вклад при интегрировании в (9) дает область энергий фотонов $p^2-m^2\ll kp\ll m^2$.

Функцию G(p) можно представить в виде $G(p) \sim G_0(p)$ а (p), где a(p) — медленно меняющаяся функция. Воспользовавшись при $k \ll m$ предельной, дифференциальной формой $(10) - dG^{-1}/dp_\mu = \Gamma_\mu^-(p, p; 0)$, получаем, что для этого вершинная функция должна иметь простую векторную структуру $\Gamma_\mu(p, p; 0) = \gamma_\mu \beta(p)$, которую будем предполагать и для малых, но отличных от нуля значений k. Это позволяет легко отделить спинорные множители в (9), а (10) преобразовать в тождество для скалярных функций

$$\frac{1}{2pk}\left(\frac{\alpha(p, k)}{p^2 - m^2 - 2pk} - \frac{\alpha(p)}{p^2 - m^2}\right) = \frac{\alpha(p, k)\beta(p, k)\alpha(p)}{(p^2 - m^2 - 2pk)(p^2 - m^2)}$$

При $k \to 0$ это выражение конечно и дает $\alpha(p)\beta(p) = 1$. В области $p^2 - m^2 \ll kp \ll m^2$, учитывая важную при дальнейшем интегрировании поправку порядка $(p^2 - m^2)/2$ pk, получаем

$$\alpha(p, k)\beta(p, k) \approx 1 - (p^2 - m^2)/2 pk.$$

Нетрудно убедиться, что подстановка этих тождеств в (9), действительно, приводит к уравнению (8a).

4. Приближенное решение уравнений

В приближении "главной области" энергий фотонов $p^2-m^2\ll kp\ll m^2$ функцию G(p-k) в уравнениях (3a) и (8a) можно опустить. В этой области с логарифмической точностью получаем

$$\varphi(0) = \frac{2}{\alpha} \lambda(0) = \frac{\eta}{\pi}, \quad \eta = \ln(m^2/(p^2 - m^2)),$$

и, следовательно,

$$\frac{dG(p)}{d\alpha} = G(p) \frac{\eta}{\pi}, \quad \frac{dG(p; \xi)}{d\xi} = -G(p; \xi) \frac{\alpha\eta}{2\pi}. \tag{11}$$

В уравнениях (3) и (8) такое приближение соответствует отбрасыванию функций $\varphi(x)$ и $\lambda(x)$ по сравнению с $\varphi(0)$ и $\lambda(0)$. Это связано с тем, что в показателе экспоненты значения k отделены от нуля $(pk \gg p^2 - m^2)$ и при $|t| \to \infty$ такие члены быстро убывают.

Уравнения (11) реализуют эффективное суммирование "главных вкладов" $(\alpha\eta)^n$ и $(\alpha\xi\eta)^n$, содержащих большой логарифм той же степени, что и α и ξ , при $\alpha\eta$, $\alpha\xi\eta\gtrsim 1$. Их решение с граничными условиями

$$G(p; \xi)|_{\xi=0} = G(p), \quad G(p)|_{z=0} = G_0(p)$$

приводит к результату (1) с показателем степени $\beta = (\sigma/2\pi) \, (2-\xi)$.

Институт физических исследований

AH ApMCCP

Поступила 30.1Х.1975

ЛИТЕРАТУРА

- 1. R. P. Feynman. Phys. Rev., 76, 749, 769 (1949).
- 2. А. А. Абрикосов. ЖЭТФ, 30, 96 (1956).
- 3. T. N. B. Kibble. Phys. Rev., 173, 1527; 174, 1882; 175, 1694 (1968).
- 4. П. П. Кулиш, Л. Д. Фадеев. ТМФ, 4, 153 (1970).
- 5. D. Zwanziger. Phys. Rev., D7, 1082 (1973); Lett. Nuovo Cim., 11, 145 (1974).
- А. В. Свидзинский. ЖЭТФ, 31, 324 (1956).
- 7. Н. Н. Боголюбов, Д. В. Ширков. Введение в теорию квантованных полей, Изд:... Наука, М., 1973, стр. 345.
- 8. Л. Д. Ландау, И. М. Халатников. ЖЭТФ, 29, 82 (1955).
- 9. D. Zwanziger. Phys. Rev. Lett., 30, 934 (1973).
- 10. N. Papanicolaou. Ann. Phys., 89, 423 (1975).
- Д. А. Киржниц. ЖЭТФ, 49, 1544 (1965); Сб. Проблемы теоретической физики... Памяти И. Е. Тамма, Изд. Наука, М., 1972.
- 12. Г. Ю. Крючков. Препринт ИФИ, 75-17, 1975.
- 13. М. В. Терентьев. ЯФ, 10, 1253 (1969).

ԳՐԻՆԻ ՖՈՒՆԿՑԻԱՅԻ ԻՆՖՐԱԿԱՐՄԻՐ ԱՍԻՄՊՏՈՏԻԿԱՅԻ ԵՎ ՏՐԱՄԱՉԱՓԱԿԱՆ ՁԵՎԱՓՈԽՈՒԹՅՈՒՆՆԵՐԻ ՄԱՍԻՆ

Գ. ՅՈՒ, ԿՐՅՈՒՁԿՈՎ

Ցույց է տրվում, որ լիցքավորված մասնիկի Գրինի ֆունկցիայի համար փափուկ ֆոտոնների ներդրման հաշվառումը համարժեք է նրա տրամաչափական ձևափոխություններին և Գրինի ֆունկցիայի համար հանգեցնում է փակ հավասարման։ Մասսայական մակերևույթին մոտ իմպուլսների արժեքների դեպքում հավասարման լուծումը ունի հայտնի ինֆրակարմիր եզակիություն։

INFRARED ASYMPTOTICS AND GAUGE TRANSFORMATION OF GREEN FUNCTION

G. Yu. KRYUCHKOV

The contribution of soft photons for the Green function of a charged particle is shown to be equivalent to its gauge transformation and leads to a closed equation for the Green function. The solution of the equation for the values of momentum near the mass-shell has a well-known infrared singularity.