are yis

ИЗЛУЧЕНИЕ УЛЬТРАРЕЛЯТИВИСТСКОГО ЗАРЯДА В ПОГЛОЩАЮЩЕЙ ПЛАСТИНЕ С УЧЕТОМ МНОГОКРАТНОГО РАССЕЯНИЯ

л. А. ВАРДАНЯН, Г. М. ГАРИБЯН, ЯН ШИ

Получены частотно-угловое и частотное распределения интенсивности полного излучения, образуемого ультрарэлятивистским зарядом при пролете чэрез пластину с учетом многократного рассеяния, а также поглощающей способности вещества пластины. Проведен подробный анализ полученных формул.

Вопрос учета влияния многократного рассеяния и поглощающей способности вещества на образование тормозного излучения быстрой частицы в веществе был впервые поставлен Ландау и Померанчуком еще в 1953 году [1]. Влияние многократного рассеяния в бесконечной непоглощающей среде было строго учтено Мигдалом [2] (см. также [3]). В работах [4-11] вопрос об учете поглощающей способности среды исследовался в разных подходах. В [4] было дано качественное рассмотрение влияния поглощения на образование тормозного излучения. В [5] вычислена энергия поля быстрой частицы, поглощаемая всем веществом в единицу времени (т. е. вычислены полные дифференциальные потери энергии частицы). Однако в отношении способа выделения потерь энергии на тормозное излучение из общих энергетических потерь имеются расхождения. В работах [7, 8] был предложен способ выделения этих потерь, отличный от использованного в работе [5]. С другой стороны, в работе [9] отдается предпочтение способу разделения [5]. Наконец, Рязановым в обзоре [12] отмечено, что полученные в этих работах формулы для бесконечной среды с конечным поглощением не дают истинного выражения для спектральной плотности потерь на тормозное излучение. Там же было отмечено, что решение задачи может быть, по-видимому, проведено строго, если рассмотреть образование излучения быстрым зарядом в пластине вещества конечной толщины с учетом поглощающей способности вещества пластины.

Настоящая работа посвящена решению именно этой задачи, которая, кроме того, представляет интерес еще и с экспериментальной точки зрения, так как обычно всегда измеряется излучение, образуемое в конечных пластинах.

1. Частотно-угловой спектр излучения

Получим формулу для излучения, образуемого ультрарелятивистским зарядом, первоначально двигавшимся вдоль оси z и перпендикулярно влетевшим в пластину толщиной a, находящуюся в вакууме. При этом мы будем следовать методике работы [13], но примем во внимание поглощающую способность вещества.

Bank Blank and and a service of the

Как обычно, будем считать, что 1) средний квадрат угла многократного рассеяния на толщине пластины много меньше единицы, 2) полные потери энергии заряда при пролете через пластину много меньше первоначальной энергии заряда.

Частотно-угловое распределение интенсивности излучения есть

$$\langle dW(\theta_0, \omega) \rangle = \frac{e^2 \omega^2}{4 \pi^2 c^3} \{ \langle |\mathbf{A}_1|^2 \rangle + \langle |\mathbf{A}_0|^2 \rangle + 2 \operatorname{Re} \langle \mathbf{A}_0^* \mathbf{A}_1 \rangle \} d\theta_0 d\omega, \quad (1)$$

где величины в фигурных скобках определяются формулами, аналогичными формулам (14)—(16) работы [13] со следующими изменениями: 1) перед всеми членами, за исключением второго слагаемого в выражении для $\langle |\mathbf{A}_1|^2 \rangle$, соответствующего излучению, образованному в вакууме после пластины, необходимо добавить множитель $\exp(-2\lambda''a)$, описывающий поглощение излучения внутри пластины $(\lambda'' - линейный коэффициент поглощения вещества по амплитуде поля излучения);$ $2) функцию <math>u_0(\theta_0, \theta; t)$ в выражениях для $\langle |\mathbf{A}_1|^2 \rangle$ и $2\operatorname{Re} \langle \mathbf{A}_0^* \mathbf{A}_1 \rangle$ необходимо заменить на функцию $u_1(\theta_0, \theta; t)$, учитывающую поглощение,

$$u_1(\theta_0, \ \theta; \ t) = \int w \left(\mathbf{r}_0, \ \mathbf{v}_0; \ \mathbf{r}, \ \mathbf{v}; \ t\right) \exp\left(2\lambda''z\right) d\mathbf{r}, \tag{2}$$

где w (\mathbf{r}_0 , \mathbf{v}_0 ; \mathbf{r} , \mathbf{v} ; t) — условная вероятность того, что в момент времени t частица имеет координату \mathbf{r} и скорость \mathbf{v} , если в начальный момент t = 0 она имела координату \mathbf{r}_0 и скорость \mathbf{v}_0 . Двумерные векторы θ и θ_0 связаны с векторами скорости частицы. \mathbf{v} и \mathbf{v}_0 соотношениями

$$\theta = \frac{\mathbf{n} (\mathbf{n} \mathbf{v}) - \mathbf{v}}{v}, \quad \theta_0 = \frac{\mathbf{n} (\mathbf{n} \mathbf{v}_0) - \mathbf{v}_0}{v_0}, \quad (3)$$

n — единичный вектор вдоль направления вылета фотона.

Вычислим теперь функцию $u_1(\theta_0, \theta; t)$. Из известного кинетического уравнения для функции w (см. [2, 3]) можно получить следующее уравнение для функции u_1 :

$$\frac{\partial u_1}{\partial t} - 2\lambda'' v \cos \vartheta u_1 = q \Delta_\vartheta u_1, \tag{4}$$

где $\vartheta = \theta - \theta_0$, $q = E_s^2/(4 L\gamma^2 m^2 c^3)$, γ и m — лоренц-фактор и масса покоя пролетающей частицы, L — радиационная единица длины вещества, $E_s = 21$ Мэв.

Кроме того, функция u_1 должна удовлетворять начальному условию

$$u_1(\theta_0, \theta; 0) = \delta(\theta_0 - \theta). \tag{5}$$

Будем считать, что основную роль играют малые углы и поэтому соз ϑ в (4) можно разложить по степеням ϑ в ряд и ограничиться первыми двумя членами разложения. Тогда решение уравнения, удовлетворяющее начальному условию (5), будет иметь вид

330

Излучение заряда в пластине с учетом многократного рассеяния

$$u_1(\theta_0, \theta; t) = \frac{\eta}{4\pi q \operatorname{sh} \eta t} \exp\left\{-\frac{\eta (\theta - \theta_0)^2}{4q} \operatorname{cth} \eta t + \frac{\eta^2 t}{2q}\right\}, \quad (6)$$

где $\eta = \sqrt{4 q \lambda'' v}$.

Аналогичная функция, но для несколько по-другому поставленной задачи, была найдена в работе [б]. Однако, следует отметить, что приведенный вид функции a_1 пригоден лишь для не слишком больших толщин (или времени пролета t). Действительно, при достаточно больших значениях t возрастает вероятность рассеяния на большой угол. Если учесть следующий член разложения по степеням угла в уравнении (4) и иметь в виду, что формула (6)должна быть пригодна и при $|\theta_0 - 0| \sim 1$, то приходим к условию

 $\eta t \ll 1.$ (7)

С учетом условия (7) формулу (6) можно записать в виде

$$u_1(\theta_0, \ \theta; \ t) = \frac{1}{4 \pi q t} \exp\left\{-\frac{(\theta - \theta_0)^2}{4 \ q \ t} + 2 \lambda'' \upsilon t\right\}$$
(8)

Условие (7) можно также переписать иначе

$$(\lambda'' a < 6^2 >)^{1/2} \ll 1,$$
 (9)

где $< b^2 > = 4 \, q a / v$ — средний квадрат угла многократного рассеяния на длине a.

Используя формулу (8), можно получить явное выражение для частотно-углового спектра

$$\langle dW(\theta_0, \omega) \rangle = \{W_1 + W_2\} d\omega d\zeta, \tag{10}$$

$$W_{1} = -\frac{2e^{2}}{\pi c} \operatorname{Re} \{ \sigma \int_{0}^{x_{a}} \exp \left[h(x - x_{a}) \right] dx \int_{0}^{x_{a} - x} M(x, y) dy \}, \qquad (11)$$

$$W_{2} = \frac{e^{2}}{\pi c} \operatorname{Re} \left\{ \frac{\zeta \exp(-hx_{a})}{(\gamma^{-2} + \zeta)^{2}} + \sigma \int_{0}^{\infty} dx \int_{0}^{\infty} \frac{x_{a} + \sigma \zeta / [1 + x_{a}(x + y)]}{[1 + x_{a}(x + y)]^{2}} \right\}$$

$$\times \exp\left[-\sigma(\mathbf{x}+\mathbf{y})[[\gamma^{-2}+\zeta/[1+\mathbf{x}_a(\mathbf{x}+\mathbf{y})]]\right] dy - \frac{1}{2}$$

$$-\frac{2\sigma\zeta}{(\gamma^{-2}+\zeta)^2}\exp\left[-(h+\sigma g)\mathbf{x}_a\right]\times$$

(12)

$$\times \int_{0}^{\infty} \frac{\exp\left\{-\sigma\left[\gamma^{-2}x + \zeta\left(x + \operatorname{th} x_{a}\right)\right]/(1 + x \operatorname{th} x_{a})\right]}{(1 + x \operatorname{th} x_{a})^{2} \operatorname{ch}^{2} x_{a}} dx -$$

Л. А. Варданян и др.

$$-\frac{2\,\mathfrak{s}\zeta}{(\gamma^{-2}+\zeta)^2}\exp\left(-hx_a\right)\int_0^{\chi^a}\frac{\exp\left[-\mathfrak{s}\left(gx+\zeta\,\mathrm{th}\,x\right)\right]}{\mathrm{ch}^2\,x}\,dx-2\mathfrak{s}\int_0^{\chi^a}\exp\left(-hx\right)dx\times$$
$$\times\int_0^{\pi}\frac{\left(\xi\left(x_a-x\right)+\mathfrak{s}\zeta\right)\exp\left[-\mathfrak{s}\left[gx+\gamma^{-2}y+\zeta\left(\xi-1\right)/\xi\left(x_a-x\right)\right]\right]}{\xi^3\left(\mathrm{ch}\,x+y\,\mathrm{sh}\,x\right)^2}\,dy\bigg\},$$

где

2

$$\sigma = \frac{(1-i)}{4} \sqrt{\frac{\omega}{q}}, \quad x_a = (1-i) \sqrt{\omega q} \frac{a}{v}, \quad g = g' + ig'',$$

$$g' = \gamma^{-2} + \frac{\omega_0^2}{\omega^3}, \quad g'' = -\frac{2\lambda''c}{\omega}, \quad \zeta = \theta_0^2, \quad h = -2i\sigma g'',$$

(13)

$$\xi = 1 + \frac{(x_a - x)(\operatorname{sh} x + y \operatorname{ch} x)}{\operatorname{ch} x + y \operatorname{sh} x},$$

$$M(x, y) = \left(x + \frac{\sigma\zeta}{1 + x \operatorname{th} y}\right) \frac{\exp\left[-\sigma\left[gy + \zeta \operatorname{th} y/(1 + x \operatorname{th} y)\right]\right]}{(1 + x \operatorname{th} y)^2 \operatorname{ch}^2 y},$$

ω₀ — плазменная частота вещества пластины.

Нетрудно видеть, что при условии

$$hx_a = 2\lambda'' a \ll 1, \tag{14}$$

т. е. когда толщина пластины много меньше длины поглощения, формулы (10) — (12), как и следовало ожидать, переходят в соответствующие формулы (17) — (19) работы [13], полученные без учета поглощения.

2. Частотный спектр излучения

Проинтегрировав частотно-угловой спектр излучения (10) — (12) по углу θ₀ (или по ζ), получим частотный спектр

$$\frac{\langle dW(\omega)\rangle}{d\omega} = \frac{2e^2}{\pi c} \operatorname{Re} \left\{ \frac{1 + \exp\left(-hx_a\right)}{2} \left(\ln\left|\frac{s_2}{s_1}\right| - \frac{s_2}{h} \ln\frac{s_2 + h}{s_2} - 1 \right) - \exp\left(-hx_a\right) \operatorname{Ei}\left(-s_2 x_a\right) - \right.$$
(15)

$$-\frac{s_2}{h} \left[\exp(-hx_a) \operatorname{Ei}(-s_2 x_a) - \operatorname{Ei}(-(h+s_2) x_a) \right] + I_1 + I_2 \right],$$

где

$$I_{1} = -\frac{s_{1} \exp\left[-(h+s_{2})x_{a}\right]}{ch^{2}x_{a}} \int_{0}^{\alpha} \frac{\exp\left(-s_{1}x\right)}{(1+x \operatorname{th} x_{a})^{2}} \left[\frac{1}{\alpha} + \exp\left(\alpha\right)\operatorname{Ei}\left(-\alpha\right)\right] dx,$$

(16)

$$I_{2} = \int_{0}^{a} \left\{ \left[\exp((-hx_{a}) + \exp((-hx)) \right] \left[\frac{1}{x} - \frac{1}{\sinh x \sinh x} \right] \right\}$$

Излучение заряда в пластине с учетом многократного рассеяния.

$$\frac{-\frac{s_1 \exp(s_1 \operatorname{th} x) \operatorname{Ei}(-s_1 \operatorname{th} x)}{\operatorname{ch}^2 x}}{\left| + \frac{\exp(-\frac{hx}{h}) - \exp(-\frac{hx_a}{h})}{h} \left(\frac{1}{x^2} - \frac{1}{\operatorname{sh}^2 x} \right) \right| \exp(-s_2 x) dx;$$

$$s_1 = \tau_1^{-2}, \quad s_2 = \tau_g, \quad \alpha = s_1 (x + \operatorname{th} x_a) / (1 + x \operatorname{th} x_a),$$

Ei(z) — интегральная показательная функция от комплексного аргумента z (см. [14]).

Заметим, что если в выражениях для I_1 и I_2 произвести интегрирование по частям, то их можно переписать в виде

$$I_{1} = \exp\left[-(h + s_{2})x_{a}\right] \left[\exp\left(s_{1} \tanh x_{a}\right) \operatorname{Ei}\left(-s_{1} \th x_{a}\right) - s_{1} \int_{0}^{\infty} \exp\left(\alpha - s_{1}x\right) \operatorname{Ei}\left(-\alpha\right) dx\right],$$
(17)

 $I_2 = \exp\left[-(h+s_2)x_a\right] \left[\ln(s_1^2 x_a \sinh x_a) - 2\exp(s_1 \th x_a)\operatorname{Ei}(-s_1 \th x_a)\right] + \frac{1}{2}\left[\ln(s_1^2 x_a \sinh x_a) - 2\exp(s_1 \th x_a)\operatorname{Ei}(-s_1 \th x_a)\right] + \frac{1}{2}\left[\ln(s_1^2 x_a \sinh x_a) - 2\exp(s_1 \th x_a)\operatorname{Ei}(-s_1 \th x_a)\right]$

+
$$[1 + \exp(-hx_a)]C + \int_0^a \left\{ [s_2 \exp(-hx_a) + (s_2 + h) \exp(-hx)] \times \right\}$$

(18)

$$\times \left[\ln (s_1 x) - \exp (s_1 th x) \operatorname{Ei} (-s_1 th x) \right] + \frac{1}{h} \left[(h + s_2)^2 \exp (-hx) - s_2^2 \exp (-hx_a) \right] \ln \frac{\operatorname{sh} x}{n} e^{-s_2 x} \exp (-s_2 x) dx,$$

где C = 0,5772 — постоянная Эйлера.

Для проведения численных расчетов последние выражения для величин I_1 и I_2 являются более предпочтительными, чем выражения (16), из-за отсутствия компенсации в окрестности нижнего предела интеграла.

Прознализируем теперь формулы (15) и (16).

3. Тонкая пластина

Предположим, что выполняются условия

$$|x_a| \ll 1, \quad \frac{x_a}{s_1} \ll 1.$$
 (19)

Физически это означает, что 1) толщина пластины много меньше зоны формирования тормозного излучения $z_{\text{тор}} = c(q\omega)^{-1/2}$; 2) средний квадрат угла многократного рассеяния частицы в пластине много меньше квадрата характерного угла излучения γ^{-2} . Тогда подынтегральные выражения в (17) и (18) можно разложить в ряд по степеням малых величин и ограничиться низшими членами.

После интегрирования получим

Л. А. Варданян и др.

$$\frac{\langle dW(\omega) \rangle}{d\omega} = W_{nep}(\omega) + W_{rop}(\omega), \qquad (20)$$

где величина $W_{nep}(\omega)$ не зависит от q и описывает обычное переходное излучение без учета многократного рассеяния:

$$W_{nep}(\omega) = \frac{2e^2}{\pi c} \operatorname{Re} \left\{ \frac{1 + \exp(-hx_a)}{2} \left(\ln \left| \frac{s_2}{s_1} \right| - \frac{s_2}{h} \ln \frac{s_2 + h}{s_2} - 1 \right) - \exp(-hx_a) \operatorname{Ei}(-s_2x_a) - \frac{s_2}{h} \left[\exp(-hx_a) \operatorname{Ei}(-s_2x_a) - \operatorname{Ei}(-(h+s_2)x_a) \right] + \exp(-(h+s_2-s_1)x_a) \left[(1 + s_1x_a) \operatorname{Ei}(-s_1x_a) + \exp(-s_1x_a) \right] + (21) + \frac{s_1 \exp(-hx_a)}{s_2 - s_1} \left[\exp(-(s_2-s_1)x_a) \operatorname{Ei}(-s_1x_a) + \ln \frac{s_2}{s_1} - \operatorname{Ei}(-s_2x_a) \right] + \frac{s_1}{s_2 + h - s_1} \left[\exp(-(h+s_2-s_1)x_a) \operatorname{Ei}(-s_1x_a) + \ln \frac{s_2 + h}{s_1} - \operatorname{Ei}(-(h+s_2)x_a) \right] \right].$$

Заметим, что если проинтегрировать известную формулу для частотно-углового распределения переходного излучения в пластине с учетом поглощения (см., напр., [15], формулу (77) при N = 1) по углу излучения, то мы в точности придем к формуле (21), что вполне естественно.

Что касается величины $W_{\text{тор}}(\omega)$ в (20), то она линейно зависит от q и обусловлена тормозным излучением:

$$\begin{split} W_{rop}(\omega) &= \frac{2e^{s}}{3\pi c} \operatorname{Re} \left\{ \exp\left[-(h+s_{2})x_{a}\right] \left[\left(1-2s_{1}x_{a}-s_{1}^{2}x_{a}^{2}-\right. \\ &\left. -\frac{2\left(2s_{2}+h\right)s_{1}}{s_{2}\left(s_{2}+h\right)}-s_{1}^{2}x_{a}^{2}\left(3+s_{1}x_{a}\right)\exp\left(s_{1}x_{a}\right)\operatorname{Ei}\left(-s_{1}x_{a}\right)\right) \frac{x_{a}}{s_{1}}+ \\ &\left. +\left(\frac{9s_{1}x_{a}}{2}+\frac{1}{2}+s_{1}x_{a}\left(3+\frac{5s_{1}x_{a}}{2}\right)\exp\left(s_{1}x_{a}\right)\operatorname{Ei}\left(-s_{1}x_{a}\right)\right) x_{a}^{2}- \\ &\left. -\frac{3s_{2}^{2}+3hs_{2}+2h^{2}}{s_{2}^{2}\left(s_{2}+h\right)^{2}}\right] + \Phi + \frac{s_{2}-2h}{s_{2}^{2}h}\left(1-\exp\left(-hx_{a}\right)\right) \right\}, \\ e & \Phi = s_{1}[s_{2}\exp\left(-hx_{a}\right)\Phi_{1}\left(s_{2}\right)+\left(s_{2}+h\right)\Phi_{1}\left(s_{2}+h\right)], \\ \phi_{1}\left(s_{2}\right) &= \frac{6}{\left(s_{2}-s_{1}\right)^{4}}\left[\operatorname{Ei}\left(-s_{2}x_{a}\right)-\operatorname{Ei}\left(-s_{1}x_{a}\right)\exp\left(-\left(s_{2}-s_{1}\right)x_{a}\right)-\ln\frac{s_{2}}{s_{1}}\right] + \\ &\left. +\frac{6}{\left(s_{2}-s_{1}\right)^{3}s_{2}}\left[1-\exp\left(-s_{2}x_{a}\right)-s_{2}x_{a}\operatorname{Ei}\left(-s_{1}x_{a}\right)\exp\left(-\left(s_{2}-s_{1}\right)x_{a}\right)\right] + \\ &\left. +\frac{1}{\left(s_{2}-s_{1}\right)s_{2}^{\frac{s}{2}}}\left[2-\left(1+\left(1+s_{2}x_{a}\right)^{2}\right)\exp\left(-s_{2}x_{a}\right)-s_{2}^{2}x_{a}^{2}\operatorname{Ei}\left(-s_{1}x_{a}\right)\exp\left(-\left(s_{2}-s_{1}\right)x_{a}\right)\right] + \\ &\left. +\frac{1}{\left(s_{2}-s_{1}\right)s_{2}^{\frac{s}{2}}}\left[2-\left(1+\left(1+s_{2}x_{a}\right)^{2}\right)\exp\left(-s_{2}x_{a}\right)-s_{2}^{\frac{s}{2}}x_{a}^{\frac{s}{2}}\operatorname{Ei}\left(-s_{1}x_{a}\right)\exp\left(-\left(s_{2}-s_{1}\right)x_{a}\right)\right] + \\ &\left. \times\exp\left(-\left(s_{2}-s_{1}\right)x_{a}\right\right]. \end{split}$$

:334

TA

Формула (22) достаточно громоздка. В предельном случае, когда толщина пластины много больше зоны формирования переходного излучения в веществе $z_{nep} = 2 c/\omega g'$, т. е. когда Re $(is_2 x_a) \gg 1$, из (22), получаем

$$W_{rop}(\omega) \approx \frac{2e^2}{3\pi c} \operatorname{Re}\left\{ \left| \frac{p}{(1-p)^4} \left(6\ln\left(\frac{1}{p}\right) - 6(1-p) - 3(1-p)^2 - 2(1-p)^3 \right) + \frac{s_2 - 2h}{h} \right| (1 - \exp\left(-hx_a\right)) s_2^{-2} \right\},$$
(23)

где $p = s_1/s_s$. Поскольку формула (22) справедлива при выполнении условий (19), то рассматриваемый предельный случай возможен только, если $z_{\text{гор}} \gg z_{\text{пер}}$. При этом если $h \to 0$, то получим, как и следовало ожидать, формулу (32) работы [13].

В другом предельном случае а « гпер получаем

$$W_{rop}(\omega) = \frac{2e^2}{3\pi c} \operatorname{Re} \left\{ \exp\left(-\frac{hx_a}{2}\right) \frac{x_a}{s_1} + \Phi - \frac{2}{(24)^2} - \frac{h^2}{(h+s_2)x_a} \frac{(3s_2^2 + 3hs_2 + 2h^2)}{s_2^2(s_2 + h)^2} + \frac{s_2 - 2h}{hs_2^2} \left(1 - \exp\left(-\frac{hx_a}{2}\right)\right) \right\}.$$

При этом если $h \rightarrow 0$, то получим

$$W_{\text{rop}}(\omega) = \frac{2e^2}{3\pi c} \frac{x_a}{s_1}, \qquad (25)$$

в согласии с [13].

- exp (

4. Толстая пластина

Пусть теперь толщина пластины порядка или больше длины поглощения, т. е. предположим, что выполняется неравенство

$$hx_n \ge 1.$$
 (26)

n

При выполнении этого условия волны, возникающие в окрестности перьэй границы пластины, почти полностью поглощаются внутри пластины и пластина фактически должна вести себя как полубесконечная поглощающая среда.

Формулы (15) и (16) с учетом условия (26) принимают вид

$$\frac{\langle dW(w) \rangle}{dw} = \frac{2e^2}{\pi c} \operatorname{Re} \left\{ \frac{1}{2} \left(\ln \left| \frac{s_2}{s_1} \right| - \frac{s_2}{h} \ln \frac{s_2 + h}{s_2} - 1 \right) + C + (h + s_2) \int_0^{x_a} \exp\left(- (h + s_2) x \right) \left[\ln (s_1 x) - \exp\left(s_1 th x \right) \operatorname{Ei} \left(- s_1 th x \right) \right] dx + \left(\frac{(h + s_2)^2}{2} \int_0^{x_a} \exp\left(- (h + s_2) x \right) \ln \frac{\operatorname{sh} x}{2} dx \right) \right\}.$$
(27)

Л. А. Варданян и др.

Рассмотрим следующие предельные случаи.

1) Пусть зона формирования тормозного излучения z_{10p} много больше либо зоны формирования переходного излучения в веществе z_{nep} , либо длины поглощения $(2\lambda'')^{-1}$, т. е.

 $|s_{g}| \gg 1$ или $|h| \gg 1$. (28)

Тогда в обоих интегралах формулы (27) существенными являются малые x. Разлагая подынтегральные функции по x и почленно интегрируя, получаем

$$\frac{\langle dW(\omega)\rangle}{d\omega} = W_0 + W', \qquad (29)$$

где величина W_0 не зависит от q и представляет собой обычное переходное излучение, образуемое на границе раздела поглощающей среды с вакуумом,

$$W_{0} = \frac{e^{2}}{\pi c} \operatorname{Re} \left\{ \frac{(1+p)}{(1-p)} \ln \left(\frac{1}{p} \right) - \frac{s_{2}}{h} \ln \frac{s_{2}+h}{s_{2}} - 1 \right\}.$$
 (30)

Величина W' обусловлена тормозным излучечием и исчезает при $q \to 0$:

$$W' = \frac{2 e^2}{3\pi c} \operatorname{Re} \left\{ \frac{1}{s_2 h} - \frac{1}{s_2^2} \left(2 - \frac{3 p}{2} F(1,4; 5,1-p) \right) - \frac{3}{5 s_2^3 h} - \frac{4}{s_2^4} \left(\frac{7}{5} + 5 p - 2 p F(1,6; 7,1-p) - \frac{30}{7} p^2 F(1,7; 8,1-p) \right) + \cdots \right\},$$
(31)

где F(a, β; γ, z) — гипергеометрический ряд (см., напр., [14]).

Если $|g''| \ll g'$ (или $|h| \ll |s_2|$), то главным членом в W' является первое слагаемое, которое можно записать в виде

$$W' = \frac{4e^2q}{3\pi c^2 \lambda'' g'} + \cdots.$$
(32)

Полученная формула представляет собой известное обобщение формулы Бете-Гайтлера с учетом поляризации среды [16] для интенсивности тормозного излучения, испущенного с длины пути, равной длине поглощения $(2\lambda'')^{-1}$.

Когда же $|g''| \gtrsim g'$, то главными в (31) являются первые два слагаемых, которые, как нетрудно убедиться, совпадают с формулой (23), если в последней положить $hx_a \gg 1$.

Сравним величины W_n и W'. Интенсивность переходного излучения W_0 -порядка $e^x/\pi c$ в "дограничной" области частот, т. е. когда

$$\omega \ll \max \left[\omega_0 \gamma; 2\lambda'' c \gamma^2 \right]$$

(см. [17]). При этом величина W, много больше W' в силу неравенства (28). В "заграничной" же области частот, когда выполняется неравенство, противоположное приведенному, величина W_0 резко уменьшается, и тормозное излучение W' может стать сравнимым с переходным излучением или больше последнего.

2) Пусть теперь зона формирования тормозного излучения $z_{\text{тор.}}$ много меньше как $z_{\text{пер}}$, так и $(2\lambda'')^{-1}$, т. е.

$$|s_2| \ll 1, |h| \ll 1.$$
 (33)

Из условий (26) и (33) следует, что при этом $|x_a| \gg 1$. Тогда найдется величина x' такая, что, с одной стороны, $|x'| \gg 1$, а с другой стороны, $|(h + s_2) x'| \ll 1$. Разобьем интеграл I_2 в (15) на две части: от нуля до x' и от x' до x_a . В первой части экспоненты типа ехр ($-S_2 x$), и ехр ($-(h + s_2) x$) могут быть разложены в ряд, после чего интеграл. легко берется. Во второй части можно опустить все члены, содержащие в знаменателе shx или сh, после чего интеграл может быть взят. В результате получаем

$$\frac{\langle dW(\omega) \rangle}{d\omega} = \frac{2e^{s}}{\pi c} \operatorname{Re}\left\{\frac{1}{h} + \frac{1}{2}\left(\ln\frac{s_{2}}{s_{1}} + \frac{s_{2}}{h}\ln\left[(s_{2}+h)s_{2}\right]-1\right) + \frac{s_{2}}{h}C\right\}.$$
(34)

Главным членом в (34) является первое слагаемое

$$W'' = \frac{2 e^2}{\pi c^2} \frac{\sqrt{q\omega}}{\lambda''}$$
(35)

Оно соответствует тормозному излучению, испущенному с длины. поглощения согласно формуле Ландау-Померанчука [1].

Таким образом, проведенный анализ показал, что в отличие от случая непоглощающей среды [13] нельзя, вообще говоря, разбить полное излучение на две части так, чтобы одна часть была пропорциональна толщине пластины и соответствовала излучению, испущенному на всем пути движения заряда внутри пластины, а другая часть соответствовала бы краевому эффекту. При наличии поглощения физический смысл имеет только полное излучение, вышедшее из пластины, что и было исследовано в настоящей работе.

5. Численный расчет

Для иллюстрации по формулам (15), (17) и (18) нами произведен численный расчет частотного спектра полного излучения для вольфрамовой пластины. Пролетающей заряженной частицей является электрон. Для сравнения вычислен также спектр обычного переходного излучения (без учета влияния многократного рассеяния).

Из рис. 1 видно, что полное излучение значительно больше обычного переходного излучения при малых толщинах. При больших толщинах, когда $2\lambda'' \alpha \gtrsim 1$, интенсивность излучения перестает зави-

337

сеть от толщины. Хорошо видно сглаживание интерференционных осцилляций [13] при учете многократного рассеяния.

Рис. 1. Зависимость интенсивности излучения $< dW(\omega) >/d\omega$ от толщины пластины а при частоте $\omega = 200$ кзв. Сплошные кривые соответствуют полному излучению, точечные — обычному переходному излучению (без учета многократного рассеяния). Значения 7-фактора электроина указаны цифрами у кривых.

Кроме указанного сглаживания осцилляций из рис. 2 и 3 видно также, что при больших частотах вклад тормозного излучения являет-

Рис. 2. Частотный спектр при толщине пластины $a = 10^{-8}$ см. Сплошные кривые соответствуют полному излучению, точечные — обычному переходному излучению.

Рис. 3. То же самое, что и на рис. 2. при $\alpha = 10^{-2}$ см.

ся существенным. Был произведен также аналогичный расчет для пластин из легкого вещества (типа углерода). Из-за слабости поглощения результаты практически совпадают с результатами, приведенными в [13], при тех же значениях ү-фактора, частоты и толщины. Ереванский физикеский институт Поступила 24.VI.1976 Излучение заряда в пластине с учетом многократного рассеяния

ЛИТЕРАТУРА

1. Л. Д. Ландау, И. Я. Померанчук. ДАН СССР, 92, 535; 735 (1953).

- 2. А. Б. Мигдал. ДАН СССР, 96, 49 (1954); ЖЭТФ, 32, 633 (1957).
- 3. И. И. Гольдман. ЖЭТФ, 38, 1866 (1960).
- 4. В. М. Галицкий, И. И. Гуревич. Nuovo Cim., 32, 396 (1964).
- 5. В. М. Галицкий, В. В. Якимец. ЖЭТФ, 46, 1066 (1964).
- 6. В. Е. Пафомов. ЖЭТФ, 52, 208 (1967).
- 7.А. А. Варфоломеев, В. А. Базылев, Н. К. Жеваю. ЖЭТФ, 63, 820 (1972); 66, 464 (1974).
- 8. А. А. Варфоломеев, Н. К. Жеваго. ЖЭТФ, 67, 890 (1974).
- 9. В. Г. Барышевский. ЖЭТФ, 67, 1651 (1974).
- 10. В. Г. Барышевский, Ню Дань Ньан. ЯФ, 20, 1219 (1974).
- И. И. Гуревич. Сб. Проблемы ядерной физики и физики элементарных частиц, М., 1975, стр. 121.
- 12. М. И. Рязанов. УФН, 114, 393 (1974).
- 13. Г. М. Гарибян, Ян Ши. ЖЭТФ, 70, 1627 (1976).
- 14. И. С. Градштейн, И. М. Рыжик. Таблицы интегралов, сумм, рядов и произведений, М., 1971.
 - Н. Н. Лебедев. Специальные функции и их применение [М.--Л., 1963.
- 15. Г. М. Гарибян. Научное сообщение ЕФИ-27 (73).
- 16. М. Л. Тер-Микаелян. ДАН СССР, 94, 1033 (1954).
- 17. Г. М. Гарибян, Ян Ши. Письма ЖЭТФ, 24, 269 (1976).

ԳԵՐԱՐԱԳ ՄԱՍՆԻԿԻ ՃԱՌԱԳԱՑԹՈՒՄԸ ԿԼԱՆՈՂ ԹԻԹԵՂՈՒՄ ԲԱԶՄԱԿԻ ՑՐՄԱՆ ՀԱՇՎԱՌՄԱՄՔ

լ. Ա. ՎԱՐԴԱՆՑԱՆ, Գ. Մ. ՂԱՐԻԲՑԱՆ, ՑԱՆ ՇԻ

Ստացված են Բիթեղի միջով անցնող գերարագ մասնիկի լրիվ ճառագայթման։ ինտենսիվության հաճախային և անկյունա-հաճախային բաշխումները հայվի առնելով բազմակի ցրումբ և Բիթեղի կլանող հատկությունը։ Ստացված բանաձևերը մանրամասնորեն ուսումնասիրված են։

THE RADIATION OF ULTRARELATIVISTIC CHARGE. IN ABSORBING PLATE TAKING INTO ACCOUNT THE. MULTIPLE SCATTERING

L. A. VARDANYAN, G. M. GARIBYAN, C. YANG

The frequency-angular and frequency distributions of the intensivity of total' radiation formed by an ultrarelativistic charge passing through a plate are obtained taking into account the multiple scattering and the absorbability of the plate. The formulae are analyzed in detail.