ИЗУЧЕНИЕ УПОРЯДОЧЕНИЯ СПЛАВОВ $Fe_3(Al, Ge)$ МЕТОДОМ ЯДЕРНОГО ГАММА-РЕЗОНАНСА

П. Л. ГРУЗИН, О. П. ЕЛЮТИН, В. С. МКРТЧЯН, Ю. Л. РОДИОНОВ, М. Х. ХАЧАТРЯН

В работе показано, что в сплавах Fe_3 (Al, Ge) после отжига при 480° С степень дальнего порядка по типу DO_3 возрастает с увеличением содержания Ge. В сплаве Fe_3Ge на начальных стадиях отжига при 480° С образуется фаза, упорядоченная по типу DO_3 . После продолжительного отжига фаза типа DO_3 переходит в фазу типа $L1_2$. Введение алюминия в сплавы Fe_3Ge повышает стабильность фазы DO_3 .

В настоящей работе исследовались процессы упорядочения сплавов Fe_3 (Al, Ge) методом ядерного гамма-резонанса (ЯГР). Спектры ЯГР снимались на мессбауэровском спектрометре MS-10K (ГДР). Источником излучения служил изотоп Co-57 в платине. Экспериментальные ошибки значений эффективных сверхтонких магнитных полей (H), определение которых описано в ряде книг, в частности, [1]. составляли ± 2 кэ. Степень дальнего порядка определяли, используя расчетную зависимость для относительного числа атомов железа, находящихся в различном окружении сплава Fe_3Al , от параметра порядка [2]. Образцы представляли собой порошки исследуемых сплавов.

Спектры резонансного поглощения гамма-квантов для сплавов $Fe_3(Al, Ge)$, закаленных от 1050° С, имеют вид магнитного расщепления с уширенными линиями (рис. 1). Такой вид спектров является характерным для атомов Fe-57, находящихся в различных окружениях, т. е. в неупорядоченном твердом растворе. Однако спектры для закаленных сплавов с увеличивающимся содержанием германия отличаются от спектров, характерных для статистического распределения атомов (рис. 16, θ). Такое отличие формы может быть обусловлено тем, что в процессе закалки частично протекают процессы упорядочения по типу DO_3 . Увеличение отклонения от статистического распределения атомов с увеличением содержания германия в сплавах $Fe_3(Al, Ge)$, по-видимому, связано с повышением температуры упорядочения по типу DO_3 . Аналогичные результаты получены авторами работы [3] при исследовании закаленных сплавов железо-германий методом $\mathfrak{R}\Gamma P$.

Отжиг закаленных сплавов Fe_3Al , легированных германием при 480°С, приводит к значительному изменению резонансных спектров. Спектр для закаленного сплава Fe_3Al после отжига при 480°С в течение 10 минут представляет собой суперпозицию нескольких спектров магнитного расщепления (рис. 2a). При полном упорядочении сплава Fe_3Al спектр состоит из двух спектров магнитного расщепления со сверхтонкими полями H_1 =300 кэ и H_2 =215 кэ [2]. Такие системы линий магнитного расщепления связаны с атомами железа, имеющими в первой координационной сфере соответственно 8 (H_1 =300 кэ) и 4 (H_2 =215 кэ) атомов железа (атомы

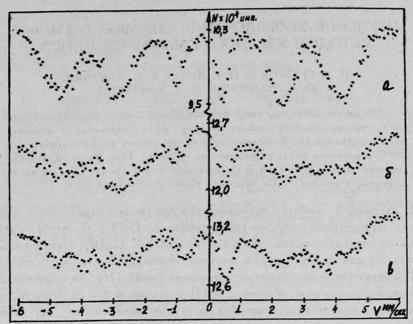


Рис. 1. Спектры резонансного поглощения гамма-квантов для сплавов Fe_3 (Al, Ge), закаленных от 1050° С в воду: α) сплав Fe_3Al , 6) сплав Fe_3 ($12,5^{\circ}/_{0}Al$, $12,5^{\circ}/_{0}Ge$), ϵ) сплав Fe_3Ge .

железа, находящиеся в подрешетке D и A сверхструктуры DO_3 , рис. 3a). В то же время в спектре (рис. 2a) наряду с присутствием двух систем линий магнитной структуры ($H_1 = 300 \text{ кв}$, $H_2 = 215 \text{ кв}$) наблюдаются пики спектров с другими значениями сверхтонкого магнитного поля. Такие пики связаны с атомами железа, имеющими в первой координационной сфере 5, 6, 7 атомов железа [2]. Такой вид спектра свидетельствует о том, что сплав Fe_3Al после отжига при 480° С в гечение 10 минут находится в неполностью упорядоченном состоянии. Сверхтонкое магнитное поле, действующее на ядра железа, имеющие в первой координационной сфере 8 атомов железа в сплаве Fe_3Al с низкой величиной параметра дальнего порядка, составляет H₁=325 кв, что на 25 кв больше, чем в сплавах с высокой степенью дальнего порядка (H₁=300 кв) [4]. Такое отличие в величинах магнитных полей, действующих на ядра атомов железа в окружении 8 атомов железа, связано с тем, что величина Н1 зависит не только от числа атомов железа, находящихся в первой координационной сфере, а в значительной степени зависит от числа атомов железа и алюминия во второй координационной сфере. С увеличением степени дальнего порядка во второй координационной сфере увеличивается число атомов алюминия в окружении железа (при s=1,0 атомы железа имеют во второй координационной сфере 6 атомов алюминия), что приводит к уменьшению величины Ні.

При отжиге сплавов $Fe_3(Al, Ge)$ при 480° С в течение 10 минут интенсивность пиков спектров, связанных с атомами железа, имеющими в пер-

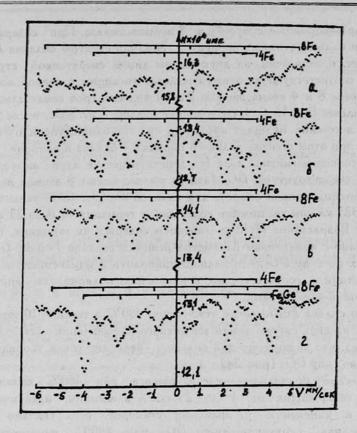


Рис. 2. Резонансные спектры для сплавов Fe_3 (Al, Ge) после закалки от 1050° С и последующих отжигов при 480° С с разными выдержками: a) Fe_3Al-10 мин, b) Fe_3 ($17^{\circ}/_{0}$ Al, $8^{\circ}/_{0}$ Ge) — 10 мин, b) Fe_3Ge-10 мин, b) Fe_3Ge-10 час.

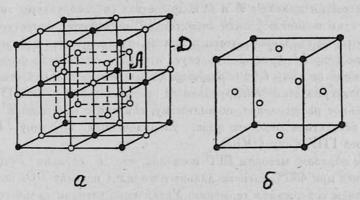


Рис. 3. а) Структура D О₃-упорядоченного сплава Fe_3Al : (\bigcirc — атомы Al, \bigcirc — атомы Fe); 6) структура $L1_2$ -упорядоченного сплава Fe_3Ge : (\bigcirc — атомы Ge, \bigcirc — атомы Fe).

вой координационной сфере 5, 6 и 7 атомов железа, уменьшается с увеличением содержания германия. В то же время возрастает интенсивность пиков свератонкой структуры, связанных с атомами железа, имеющими в

первой координационной сфере 4 и 8 атомов железа. При содержании в сплавах 8 и больше атомных процентов германия спектры сплавов Fe_3 (Al, Ge) состоят, практически, из двух систем линий сверхтонкой структуры (рис. 26), соответствующих атомам железа, имеющим в первой координационной сфере 8 и 4 атома железа. Такой вид спектров свидетельствует о том, что сплавы $Fe_3(Al, Ge)$, содержащие больше 8 ат. % Ge, после отжига при 480° С в течение 10 минут находятся в состоянии, упорядоченном по типу DO_3 , при этом степень дальнего порядка s близка к единице.

Сверхтонкое магнитное поле H_1 , действующее на ядро железа в подрешетке D сверхструктуры DO_3 (атомы железа имеют 8 атомов железа в первой координационной сфере), для сплавов $Fe_3(Al, Ge)$ увеличивается от 300 до 325 кэ при увеличении содержания германия от 0 до 25 атомных процентов. Возрастание H_1 с увеличением содержания германия, по-видимому, связано с изменением параметра решетки сплавов $Fe_3(Al, Ge)$, упорядоченных по типу DO_3 , что должно приводить к изменению обменного взаимодействия и, соответственно, к изменению поляризации внутренних s-электронов d-электронами.

Спектр сплава Fe_3Ge после отжига при 480°С в течение 10 минут также состоит из двух систем линий магнитного расщепления (H_1 =325 кв и H_2 =205 кв), что характерно для сплавов, находящихся в упорядоченном состоянии по типу DO_3 (рис. 2в).

Увеличение продолжительности отжига при 480°C сплавов (Al,Ge), содержащих от 4 до 25 ат. % алюминия, практически не приводит к изменению резонансных спектров. Это связано с тем, что стабильная структура типа DO₃ при 480°C формируется на ранних стадиях отжига (до 10 мин). В то же время для сплава Fe_3Ge спектр существенно изменяется. В частности, увеличение продолжительности отжига приводит к уменьшению интенсивности пиков спектров, связанных с атомами железа в A и D подрешетках сверхструктуры типа DO_3 . Наряду с этим возникают пики сверхтонкой, магнитной структуры (H =250 кэ), которые связаны с атомами железа, находящимися в фазе, упорядоченной по типу LI_2 (рис. 2i). Следует отметить, что спектр фазы Fe_3Ge . упорядоченной по типу L12, образующейся на ранних стадиях отжига при 480°С, характеризуется квадрупольным расшеплением $\triangle = 0.15$ мм/сек. Квадрупольное расщепление, по-видимому, связано с искажением решетки фазы $L1_2$ вследствие того, что фаза, упорядоченная по типу $L1_2$, образуется через ГПУ фазу (DO_{19}).

Таким образом, методом ЯГР показано, что в сплавах $Fe_3(Al, Ge)$ после отжига при 480°C степень дальнего порядка по типу DO_3 возрастает с увеличением содержания германия. Увеличение степени дальнего порядка типа DO_3 для сплавов $Fe_3(Al, Ge)$ с добавлением германия связано с повышением температуры перехода порядок-беспорядок. В сплаве Fe_3Ge на начальных стадиях отжига при 480°C образуется фаза, упорядоченная по типу DO_3 . После продолжительного отжига фаза, упорядоченная по типу DO_3 , переходит в фазу, упорядоченную по типу $L1_2$. Введение алюми-

ния в сплавы Fe_3Ge повышает стабильность фазы, упорядоченной по типу DO_3 .

Поступила 5.VII.1973

ЛИТЕРАТУРА

- 1. Г. Вертхейм. Эффект Мессбауэра. Изд. Мир, М., 1966.
- 2. Р. Н. Кузьмин, С. А. Лосиевская. ФММ, 29, 569 (1970).
- L. Brossard, G. A. Fatseas, J. L. Dormann, P. Lecocq. J. Appl. -Phys., 42, 1306 (1971).
- Л. Л. Грузин, В. С. Мкртчян, Ю. А. Родионов, Я. П. Селисский, М. Х. Хачатрян. ФММ, 34, 316 (1972).

$Fe_3\left(Al,\;Ge ight)$ ՀԱՄԱՋՈՒԼՎԱԾՔՆԵՐԻ ԿԱՐԳԱՎՈՐՄԱՆ ՊՐՈՑԵՍՆԵՐԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ ՄԻՋՈՒԿԱՅԻՆ ԳԱՄՄԱ $_$ ՌԵԶՈՆԱՆՍԻ ՄԵԹՈԴՈՎ

Պ. լ. ԳՐՈՒԶԻՆ, Օ. Պ. ԵԼՅՈՒՏԻՆ, Վ. Ս. ՄԿՐՏՉՑԱՆ, Յու. Լ. ՌՈԳԻՈՆՈՎ, Մ. Խ. ԽԱՉԱՏՐՑԱԵ

 $Fe_3(Al,\ Ge)$ համաձուլվածքներում 480°C շիկամշակման ժամանակ DO_3 ստրուկտուրային ձեի հեռավոր կարդի աստիճանը աճում է Ge -ի բաղադրության մեծացումով։ Fe_3Ge համաձուլվածքում 480°C-ում շիկամշակման սկզբնական ստադիաներում առաջանում է DO_3 ձեի կարդավորված ֆալւ Հետագա շիկամշակման ընթացքում այդ ֆաղը անցնում է Ll_2 ձևի ֆաղի Al -ի մտցնելը $\mathrm{Fe}_3\mathrm{Ge}$ համաձուլվածքի մեջ բարձրացնում է DO_3 ֆաղի կայունու-իլունը։

THE INVESTIGATION OF THE REGULATING PROCESSES OF $Fe_3(Al, Ge)$ ALLOYS BY THE METHOD OF NUCLEAR GAMMA-RESONANCE

P. A. GRUZIN, O. P. YELYUTIN, V. S. MKRTCHYAN, U. L. RODIONOV, M. Kb. KHACHATRYAN

When $Fe_3(Al, Ge)$ alloys are heated at 480° C the distant order degree of the type DO_3 grows with the increase of the Ge content. At initial stages of heating a phaze of DO_3 type is formed in Fe_3Ge alloy. After a continuous heating the DO_3 phaze changes to LI_2 type. The admixture of Al to Fe_3Ge alloy increases the stability of the DO_3 phaze.