РАСПРЕДЕЛЕНИЯ ЭДЕЙРА ДЛЯ ФОТОРОЖДЕНИЯ Х°(960)-МЕЗОНА НА ЯДРЕ ⁴Не

л. Э. ГЕНИНА, А. Н. ЗАСЛАВСКИЙ

В работе детально анализируются распределения Эдейра для реакции $\gamma + 4He \rightarrow X^0 + 4He$. Распределения Эдейра для $J^P(X^0) = 2^$ для всех мод распада отличаются от изотропных, что позволяет использовать их для определения снина X^0 (960)-мезона.

1. В настоящее время спин Х° (960)-мезона нельзя считать твердо установленным [1-3]. Известно, что анализ только механизмов распада X° -мезона $X^{\circ} \rightarrow \eta \pi^{+} \pi^{-}$, $X^{\circ} \rightarrow \rho \gamma$, $X^{\circ} \rightarrow \gamma \gamma$ не позволяет ИСКЛЮЧИТЬ *I^p*(X°)=2⁻ при любом практически достижимом статистическом уровне [3]. В этой связи становится важным совместное изучение механизмов рождения и распадов Х° (960)-мезона в сильных и электромагнитных взаимодействиях [3, 4]. В последнее время предприняты значительные экспериментальные усилия, чтобы решить вопрос о спине X° (960)-мезона. В недавних экспериментах в Брукхейвене [6, 7, 11], где изучались возможные спиновые эффекты в реакции K⁻ p→ΛX⁰, просуммированные по всем значениям переданного импульса (так как статистика не позволяла построить распределения Эдейра), существенные отклонения от изотропии не были замечены. Однако после сделанного в [13] замечания о необходимости более жесткого отбора событий под малыми углами рождения, чтобы эффекты спина не могли быть затушеваны, материал работы [11] был заново обработан. Результаты обработки опубликованы в работах [5, 12]. Обнаружено отклонение от изотропии в распределениях Эдейра для реакции $K^- p \to \Lambda X^{\circ}$, что является аргументом в пользу $\int_{-\infty}^{\infty} (X^{i}) = 2^{-1}$. Подчеркнем, что обнаружение статистически обоснованной анизотропии в распределениях Эдейра является строгим доказательством гипотезы 2-, основанным только на сохранении момента количества движения.

В связи с этим особенно важно экспериментальное изучение эффектов спина X°(960)-мезона в других реакциях, где альтернативные гипотезы 0⁻ и 2⁻ могут быть ясно различимы.

Как показано в работе [8], в реакции

$$\gamma + {}^{4}He \rightarrow X^{0} + {}^{4}He \tag{1}$$

существует простой эффект, связанный со спином $X^{\circ}(960)$ -мезона. Дифференциальное сечение $\frac{d^{\sigma}}{d^2 F^2(t)}$ для $\int^p (X^{\prime}) = 0^-$ в области малых углов пропорционально $\sin^2 \theta$, а для $\int^p (X^0) = 2^-$ слабо зависит от угла рождения (F(t) — форм фактор ядра, θ — угол рождения X^1 -мезона в с.ц.м.).

В настоящей работе детально анализируются распределения Эдейра для реакции

с целью поиска других эффектов спина X° -мезона. Известным недостатком, связанным с определением спина частицы по распределению Эдейра, является существенное уменьшение статистики, так как события необходимо отбирать вблизи угла 0° (например, такой отбор событий уменьшает общую статистику примерно в 10 раз в реакции $K^- p \rightarrow \Lambda X^0$ [5]).

Определение спина X°(960) по распределению Эдейра для реакции $\gamma + He \to X^\circ + He$ свободно от этого недостатка. Из-за формфактора ядра F(t), который быстро падает с ростом |t|, все события группируются в области малых углов, и определение спина X°(960)-мезона по распределению Эдейра проводится без существенного уменьшения статистики. Таким образом, поведение дифференциального сечения реакции (1) и распределения Эдейра могут быть одинаково чувствительны к спину X°(960)-мезона и являются эффектами одного порядка. Важно отметить, что так как амплитуда реакции $\gamma + He \to X^\circ + He$ вперед только одна, распределения Эдейра для этой реакции не зависят явно от элементов матрицы плотности и не содержат неизвестных параметров, связанных с механизмом рождения.

2. Амплитуда реакции $\gamma + He \rightarrow He + X^{\circ}(960)$ для $\int^{P} (X^{\circ}) = 0^{-}$ в с. ц. м. имеет вид [8]

$$T_{0-} = f_0(E, \theta) \epsilon n, \qquad (2)$$

где n—нормаль к плоскости реакции, ε — вектор поляризации фотона. Для гипотезы $\int^{P} (X^0) = 2^{-}$ в общем случае реакция (1) описывается пятью инвариантными амплитудами [8]. Нас в дальнейшем будет интересовать область малых углов рождения X°-мезона. В этом случае реакция (1) описывается одной амплитудой, которую запишем в следующем виде:

$$T_{2} - = f_{2}(E, \theta) \overline{X}_{ij} k_{l} [k \times \varepsilon]_{j}, \qquad (3)$$

где k — импульс пучка, X_{ij} — спиновая функция X^0 -мезона для $J^p(X^0) = 2^-$.

Рассмотрим теперь распределения Эдейра в реакции $\gamma + He \rightarrow X^0 + He$ для всех известных распадов $X^0 \rightarrow \eta \pi^+ \pi^-$, $X^0 \rightarrow \rho \gamma$ и $X^0 \rightarrow \gamma \gamma^-$, а. Распад $X^0 \rightarrow \eta \pi^+ \pi^-$. Матричный, элемент распада $X^0 \rightarrow \eta \pi^+ \pi^-$

для $\int^{p} (X^{0}) = 2^{-}$ запишем в следующем виде:

$$M(X^{0} \to \eta \pi^{+} \pi^{-}) = \left[q_{i} q_{j} + w d_{i} d_{j} - \frac{1}{3} \delta_{ij} (\vec{q}^{2} + w d^{3}) \right] X_{ij}, \qquad (4)$$

где q — импульс η -мезона в системе покоя X° -мезона, d — импульс π^+ -мезона в системе покоя $\pi^+\pi^+$ -пары, ω — комплексный параметр.

Построим распределения Эдейра для нормали к плоскости распа-

да $X^0 \rightarrow \eta \pi^+ \pi^-$. Общее распределение для нормали к плоскости трехчастичного распада имеет вид [9]

$$W^{n} = \sum_{m, m'} p_{mm'} \sum_{M} D_{mM}^{j*} (\alpha, \beta, 0) D_{m'M}^{j} (\alpha, \beta, 0) |R_{M}|^{2},$$
(5)

$$|R_{\mathcal{M}}|^{2} = 2\pi \sum_{\lambda, \kappa_{2}\lambda_{3}} \int d\omega_{1} d\omega_{2} |F_{\mathcal{M}}(\omega_{1}\lambda_{1}, \omega_{2}\lambda_{2}, \omega_{3}\lambda_{3})|^{2},$$

где $\rho_{mm'}$ — элементы матрицы плотности, характеризующие процесс рождения, β — полярный угол между направлением (z) и нормалью к плоскости распада, α — азимутальный угол (ось z выбрана вдоль им-

пульса пучка,
$$\cos\beta = \frac{(\vec{k} \ \vec{n})}{|\vec{k}| \ |\vec{n}|}$$
; $F_M(\omega_1 \lambda_1, \ \omega_2 \lambda_2, \ \omega_3 \lambda_3)$ — амплитуды трехча-

стичного распада, характеризуемые проекцией *M* вектора спина на нормаль к плоскости реакции. Они связаны с матричным элементом (4), построенным обычным образом из импульсов распадных частиц. Эта связь получена в работе [10] и в нашем случае имеет следующий вид:

$$R_0^+ + R_2^+ = \frac{1}{2} \int (q^4 + |w|^2 d^4 + \operatorname{Re} w q^2 d^2 Z_{\ell}) dw_1 dw_2,$$
(6)

$$R_{0}^{+} - R_{2}^{+} = -\frac{1}{4} \int [q^{4} + |w|^{2} d^{4} + 2 \operatorname{Re} w q^{2} d^{2} (1 + Z_{\delta}) d\omega_{1} d\omega_{2},$$

-3 cos ô, cos ô = $\frac{\vec{q} \cdot \vec{d}}{\cdot \cdot \cdot \cdot}$

Интегрирование ведется по диаграмме Далитца распада $X^n \rightarrow \eta \pi^+ \pi^-$.

19 d

При образовании Х⁰-мезона вперед проекции ±2,0 на направле-

ние k запрещены. Имеет место сильная выстроенность:

$$\rho_{22} = \rho_{-2-2} = 0, \quad \rho_{00} = 0. \tag{7}$$

В (5) дают вклад только элементы матрицы плотности ρ_{11} и ρ_{-1-1} , причем $\rho_{11} = \rho_{-1-1}$, так как

$$\rho_{-m-m'} = (-1)^{m-m'} \rho_{mm'}.$$

Это позволяет получить для распределения Эдейра между импульсом падающего пучка в реакции (1) и нормалью к плоскости распада $X^0 \rightarrow \eta \pi^+ \pi^-$ следующее выражение:

$$W^{n}(\beta) = R_{2}^{+} \rho_{11} \sin^{2}\beta \left[1 + \cos^{2}\beta \left(1 + 6 \frac{R_{0}^{+}}{R_{2}^{+}} \right) \right], \qquad (8)$$

где R_0^+ и R_2^+ определяются с помощью формул (6).

Распределение по азимутальному углу а изотропно. Вычисление

356

где Zi = 1

 $\frac{R_{0}^{+}}{R_{2}^{+}}$ обсуждается в Приложении. Недавние данные [12] Брукхейвена дают для параметра w почти мнимое значение

$$w^{-1} = -0.02 + 0.05 + (0.35 + 0.02) i.$$
 (4a)

Распределение (8), вычисленное с этим значением параметра W, имеет вид

$$W^{n}(\beta) \sim \sin^{2}\beta (1 + 3\cos^{2}\beta).$$
⁽⁹⁾

На рис. З приведены распределение с нормалью при $\omega = -3i$ (4а) и распределения для вещественных значений параметра $\omega = 4$ и $\omega = -4$, которые также согласуются с диаграммой Далитца распада $X^0 \rightarrow \eta \pi^+ \pi^-$.

Кроме распределения (8) можно получить еще два распределения Эдейра по углам между импульсом пучка фотонов и импульсом (\vec{q}) η -мезона в системе покоя X^0 -мезона и относительным импульсом (\vec{d}) $\pi^+\pi^-$ -мезонов (в с. ц. м.) распада $X^0 \to \eta \pi^+\pi^-$ соответственно:

$$W^{q}(\theta) = \frac{1}{2(a_{1} + |w|^{2}a_{2})} \left[|w|^{2}a_{2} + \frac{15}{8}a_{1}\sin^{2}2\theta \right], \quad (10)$$

$$W^{d}(\gamma) = \frac{1}{2(\alpha_{1} + |w|^{2} \alpha_{2})} \left[\alpha_{1} + \frac{15}{8} |w|^{2} \alpha_{2} \sin^{2} 2\gamma \right], \quad (11)$$

где

$$\cos \theta = \frac{(\vec{k} \cdot \vec{q})}{|\vec{k}| |\vec{q}|}, \quad \cos \gamma = \frac{(\vec{k} \cdot \vec{d})}{|\vec{k}| |\vec{d}|}, \quad \alpha_2 : \alpha_1 = 6, 6:1.$$

Если предположить, что $\omega = -3i$, то распределения Эдейра (10) и (11) принимают вид

$$W^{q}(\theta) \sim 1 + 1,38 \sin^{2} 2 \theta,$$
 (12)

$$W^{a}(\gamma) \sim 1 + 2,56 \sin^{2} 2 \gamma.$$
 (13)

Как видно, все распределения не зависят явно от элементов матрицы плотности. Графики распределений (8), (10), (11) при различных значениях распадного параметра w, взятого из имеющихся экспериментальных данных по распаду $X^0 \rightarrow \eta \pi^+ \pi^-$ [12], приведены на рис. (1—3). Ясно, что распределения имеют характерную структуру и сильно отличаются от изотропных.

б. Распад $X^{\circ} \to \rho\gamma$. Относительная вероятность распада $X^{\circ} \to \rho\gamma$ велика — $30^{\circ}/_{0}$ [1] и анализ распределений Эдейра для этого случая также представляет интерес.

Матричный элемент распада $X^{\circ} \rightarrow \wp \gamma$ для $\int^{p} (X^{\circ}) = 2^{-}$ состоит из амплитуд *M*1-, *E*2- и *M*3-переходов

$$M_{2-}(X^{\circ} \to \rho \gamma) = \{g_{1}b_{i}[q \ e]_{j} + g_{2}e_{i}[q \ b]_{j} + fq_{i}q_{j}(q \ [eb])\} X_{ij}, \quad (14)$$

где b — вектор поляризации р-мезона, q — импульс γ-кванта распаде, d — относительный импульс π-мезонов от распада р-мезона.

Рис. 1. Корреляция между импульсом пучка фотонов \vec{k} и относительным импульсом π -мезонов (\vec{d}) в распаде $X^2 - \eta \pi^+ \pi^-$. Жирная линия – распределение для w = -3i, тонкая линия – для |w| = 4.

Рис. 2. Корреляция между импульсом пучка фотонов (k) и импульсом η -мезона (q) в распаде $X^{\circ} - \eta \pi^{+} \pi^{-}$. Жирная линия — распределение для w = -3i, тоикая линия — для |w| = 4.

Рис. 3. Корреляция между импульсом пучка фотонов (k) и нормалью (n) к илоскости распада $X^{\circ} \to \eta \pi^+ \pi^-$. Жирная линия — распределение для w = -3i, тонкая линия — для w = -4, штрих-пунктирная линия — для w = 4.

При малом энерговыделении ($Q \sim 200 \, M_{98}$) амплитудой перехода M3 можно пренебречь (f = 0).

Распределения Эдейра W" и Wd им ют вид

W

$$W^{q}(b') = \frac{3}{16\left(1+g+\frac{7}{10}g^{2}\right)} [3-\cos^{2b'}+4g\sin^{2b'}+2g^{2}(1+g+\frac{7}{10}g^{2})], \qquad (15)$$

$$\frac{1}{2}\left((\gamma')\right) = \frac{3}{8\left(1+g+\frac{7}{10}g^{2}\right)} \left[(1+\cos^{2}\gamma')(1+g)+g^{2}\left(1-\frac{1}{5}\cos^{2}\gamma'\right)\right]. \qquad (16)$$

Распределения Эдейра (15) и (16) существенным образом зависят от параметра смещивания $g = \frac{g_2}{g_1}$ амплитуд *M*1- и *E*2-переходов в распаде $X^\circ \to \rho\gamma$. Параметр *g* может быть определен из данных по распаду $X^\circ \to \rho\gamma$. Для распределения по углу между импульсом γ -кванта и импульсом π^+ -мезонов в системе покоя *p*-мезона (cos $z \sim (q d)$) эксперимент Брукхейвенской группы [11] дает

$$W(\alpha) = 0, 1^{+0.6}_{-0.1} + \sin^2 \alpha.$$
⁽¹⁷⁾

359

Распределение W(a) легко может быть вычислено с помощью матричного элемента (14):

$$W(\alpha) = g_1^2 \left(1 + \frac{1}{6} \sin^2 \alpha \right) + \left(\frac{7}{6} g_2^2 + \frac{5}{3} g_1 g_2 \right) \sin^2 \alpha.$$
(18)

Легко видеть, что чистый *M*1-переход, который дает $W(\alpha) = 6 + \sin^2 \alpha$, маловероятен. Более предпочтительно значение $|g| \gg 1$ и g = 1. Для отношения $g = g_2/g_1$ может быть получено ограничение

$$g = 2,0^{+\infty}_{-1,3}$$
 или $g = -3,5^{+1,4}_{-\infty}$ (19)

На рис. 4, 5 приведены распределения Эдейра (15) и (16) для распада $X^{\circ} \rightarrow \rho \gamma$ для некоторых значений параметра g. Распределения во всех случаях отличаются от изотропных, что позволяет использовать их для определения спина X° -мезона.

Рис. 4. Корреляция между импульсом пучка фотонов (k) и импульсом (q) 7-кванта в распаде $X^{\circ} \rightarrow \rho\gamma$. Жирная линия — распределение для $|g| \gg 1$, тонкая линия — распределение для M1-перехода (g = 0), штрих-пунктирная линия — для g = 1.

в. Распад $X^{\circ} \to \gamma\gamma$. Матричный элемент распада $X^{\circ} \to 2\gamma$ для $J^{p}(X^{\circ}) = 2^{-}$ содержит одну амплитуду (q — импульс γ -кванта в системе покоя X°)

$$M_{2} - (X^{\circ} \to \gamma \gamma) \sim X_{lj} q_{l} q_{j} (q [e_{1}, e_{2}]).$$
⁽²⁰⁾

Поэтому распределение Эдейра $W^q(\bar{\theta})(\cos\theta \sim (kq))$ вычисляется однозначно и не зависит от произвольных параметров

Рис. 5. Корреляция между импульсом пучка фотонов (k) и относительным импульсом (d) π -мезонов в распаде $X^{\circ} \rightarrow \rho^{\circ} \gamma \rightarrow \pi^{+} \pi^{-} \gamma$. Жирная липия—распределение для $|g| \gg 1$, тойкая линия—распределение для M1-перехода (g = 0), штрих-пунктирная линия— для g = 1.

$$W''(\bar{b}) = \frac{15}{16} \sin^2 2 \, \bar{b}.$$
 (21)

Подчеркнем еще раз, что для $\int^{P} (X^{\circ}) = 0^{-}$ все распределения W_{0}^{n} , W_{0}^{d} и W_{0}^{d} изотропны независимо от угла рождения X° -мезона:

$$W_0^a = W_0^q = W_0^d = \frac{1}{2} \,. \tag{22}$$

Проведенный в работе анализ распределений показывает, что экспериментальное исследование реакции $\gamma + {}^{4}He \rightarrow X^{\circ} + {}^{4}He$ позволяет однозначно установить спин-четность X°(960)-мезона.

Авторы благодарны Р. Ледницкому, С. Г. Матиняну, В. И. Огиевецкому и особенно Т. Л. Асатиани за обсуждения и полезные замечания.

Приложение

Для вычисления распределения Эдейра с нормалью к плоскости распада $X^{\circ} \rightarrow \eta \pi^{+}\pi^{-}$ важны следующие соотношения:

$$R_0^+ = \frac{1}{4} (a_1 + |w|^2 a_2 - 2 \operatorname{Re} w a_3), \qquad (\Pi 1)$$

$$R_2^+ = \frac{1}{4} (3 a_1 + 3 |w|^2 a_2 + 2 \operatorname{Re} w a_3), \qquad (\Pi 2)$$

где a_1 , a_2 , a_3 — интегралы по фазовому объему распада $X^\circ \to \eta \pi^+ \pi^-$

$$\alpha_1 = \int q^4 d\omega_1 d\omega_2, \qquad (\Pi 3)$$

1-24

$$a_2 = \int d^4 d\omega_1 d\omega_2, \tag{\Pi4}$$

$$a_3 = \int q^2 d^2 d\omega_1 d\omega_2. \tag{\Pi5}$$

Для отношения получаем $a_1:a_2:a_3 = 27,6:4,2:6,4,$ что вместе с w = -3i приводит к $\frac{R_0^+}{R_2^+} = \frac{1}{3}$, которое использовано при получении распределения (9).

J

Ереванский физический институт

Поступила 19.ХП.1973

ЛИТЕРАТУРА

- 1. Particle Data Group. Rev. Mod. Phys., 45, N 2 (1973).
- 2. А. Н. Заславский, В. И. Ошевецкий, В. Тыбор. Письма ЖЭТФ, 6, 604 (1967); ЯФ, 9, 852 (1969).
- 3. V. I. Ogievetsky, W. Tybor, A. N. Zaslavsky. Phys. Lett., 35B, 69 (1971).
- 4. J. Klosinski, J. Rembielinski, W. Tybor. Acta Phys. Pol., B1, 359 (1970).
- 5. G. Kalbfleisch et al. Phys. Rev. Lett., 31, 333 (1973).
- 6. S. M. Jacobs et al. Phys. Rev., D8, 18 (1973).
- 7. M. Aguilar-Benitez et al. Phys. Rev., D6, 29 (1972).
- 8. V. Khoze, A. N. Zaslavsky. Nucl. Phys., B38, 261 (1972).
- 9. S. M. Berman, M. Jacob. Phys. Rev., 139,1023 (1965).
- Л. Э. Генина, А. Н. Заславский, Р. Ледницки. Доклад на международном семинаре по физике высоких энергий, Румыния, 1973.
- 11. J. S. Danburg et al. Preprint BNL-16908 (1972).
- 12. J. S. Danburg et al. Preprint BNL-17997, N 6-261 (1973).
- А. Буяк, А. Н. Заславский, В. И. Ошевецкий. Препринт ОИЯИ, Е2—6847 (1972); ЯФ, 18, 894 (1973).

ԷԴԵՅՐԻ ԲԱՇԽՈՒՄԸ ⁴He ՄԻՋՈՒԿԻ ՎՐԱ Х°(960)–ՄԵԶՈՆԻ ՖՈՏՈԾՆՄԱՆ ՀԱՄԱՐ

լ. է. ԳԵՆԻՆԱ, Ա. Ն. ԶԱՍԼԱՎՍԿԻ

Աշխատանջում քննարկվում է էգեյրի բաշխումը $i + {}^{4}He \to X^{\circ} + {}^{4}He$ ռեակցիայի համար էղեյրի բաշխումը $\int^{\infty} (X^{\circ}) = 2^{-}$ բվանտային խվի համար տրոհման բոլոր եղանակների դեպքում տարբերվում է իզոտրոպ բաշխումից։ Այդ Թույլ է տալիս օգտագործել նշված բաշխումը X°(960)-մեզոնի սպինի որոշման համար։

ADAIR DISTRIBUTION FOR X° (960)-MESON PHOTOPRODUCTION ON *He NUCLEUS

L. E. GENINA, A. N. ZASLAVSKI

Correlations between decay modes and the production of the X° (960)-meson in the reaction $\gamma + {}^{4}He \rightarrow X^{\circ} + {}^{4}He$ are considered. Adair distributions allow to distinguish between the hypotheses of $J^{P}(X^{\circ}) = 2^{-}$ and 0^{-} .

362